The aim of this work was to evaluate and compare the performance of comparatively new synthetic PTW 60019 microDiamond with PTW 60017 Diode E detector in measuring the output factors (OF) of IntraOperative Radiation T...The aim of this work was to evaluate and compare the performance of comparatively new synthetic PTW 60019 microDiamond with PTW 60017 Diode E detector in measuring the output factors (OF) of IntraOperative Radiation Therapy (IORT) electron beams. For a given electron beam, OFs are defined as the ratio of the dose for any applicator size at the depth of maximum to that for a reference applicator. IORT is an innovative treatment technique that delivers a large single fraction of radiation dose to the tumor bed during surgery. The electron beams considered in this study were generated by the mobile NOVAC7 system. This device produces high-dose-per-pulse electron beams with four different energies in the range from 3 MeV to 9 MeV. We performed measurements for two higher energies, namely 7MeV and 9 MeV. The beam collimation was performed through Perspex (PMMA) cylindrical applicators with different diameters. The accurate dose delivery of IORT tightly depends on the precision of measured dose by reference applicator and the output factors of clinical applicators. The output factors were measured using microDiamond and Diode E detectors. The microDiamond detector performance was compared with a Diode E detector. Determined output factors of two detectors were in good agreement. The maximum deviations of output factors for microDiamond were found 2.74%, and 2.17% for 7 MeV and 9 MeV, respectively with respect to the PTW Diode E. The microDiamond detector was shown to exhibit excellent properties for output factor measurements and could be considered as a suitable tool for electron beam dosimetry.展开更多
文摘The aim of this work was to evaluate and compare the performance of comparatively new synthetic PTW 60019 microDiamond with PTW 60017 Diode E detector in measuring the output factors (OF) of IntraOperative Radiation Therapy (IORT) electron beams. For a given electron beam, OFs are defined as the ratio of the dose for any applicator size at the depth of maximum to that for a reference applicator. IORT is an innovative treatment technique that delivers a large single fraction of radiation dose to the tumor bed during surgery. The electron beams considered in this study were generated by the mobile NOVAC7 system. This device produces high-dose-per-pulse electron beams with four different energies in the range from 3 MeV to 9 MeV. We performed measurements for two higher energies, namely 7MeV and 9 MeV. The beam collimation was performed through Perspex (PMMA) cylindrical applicators with different diameters. The accurate dose delivery of IORT tightly depends on the precision of measured dose by reference applicator and the output factors of clinical applicators. The output factors were measured using microDiamond and Diode E detectors. The microDiamond detector performance was compared with a Diode E detector. Determined output factors of two detectors were in good agreement. The maximum deviations of output factors for microDiamond were found 2.74%, and 2.17% for 7 MeV and 9 MeV, respectively with respect to the PTW Diode E. The microDiamond detector was shown to exhibit excellent properties for output factor measurements and could be considered as a suitable tool for electron beam dosimetry.