To study a form invariance of Lagrange system, the form invariance of Lagrange equations under the infinitesimal transformations was used. The definition and criterion for the form invariance are given. The relati...To study a form invariance of Lagrange system, the form invariance of Lagrange equations under the infinitesimal transformations was used. The definition and criterion for the form invariance are given. The relation between the form invariance and the Noether symmetry was established.展开更多
In this paper we give a new method to investigate Noether symmetries and conservation laws of nonconservative and nonholonomic mechanical systems on time scales , which unifies the Noether's theories of the two ca...In this paper we give a new method to investigate Noether symmetries and conservation laws of nonconservative and nonholonomic mechanical systems on time scales , which unifies the Noether's theories of the two cases for the continuous and the discrete nonconservative and nonholonomic systems. Firstly, the exchanging relationships between the isochronous variation and the delta derivatives as well as the relationships between the isochronous variation and the total variation on time scales are obtained. Secondly, using the exchanging relationships, the Hamilton's principle is presented for nonconservative systems with delta derivatives and then the Lagrange equations of the systems are obtained. Thirdly, based on the quasi-invariance of Hamiltonian action of the systems under the infinitesimal transformations with respect to the time and generalized coordinates, the Noether's theorem and the conservation laws for nonconservative systems on time scales are given. Fourthly, the d'Alembert-Lagrange principle with delta derivatives is presented, and the Lagrange equations of nonholonomic systems with delta derivatives are obtained. In addition, the Noether's theorems and the conservation laws for nonholonomic systems on time scales are also obtained. Lastly, we present a new version of Noether's theorems for discrete systems. Several examples are given to illustrate the application of our results.展开更多
文摘To study a form invariance of Lagrange system, the form invariance of Lagrange equations under the infinitesimal transformations was used. The definition and criterion for the form invariance are given. The relation between the form invariance and the Noether symmetry was established.
基金supported by the National Natural Science Foundations of China (Grant Nos.11072218 and 11272287)the Natural Science Foundations of Zhejiang Province of China (Grant No.Y6110314)
文摘In this paper we give a new method to investigate Noether symmetries and conservation laws of nonconservative and nonholonomic mechanical systems on time scales , which unifies the Noether's theories of the two cases for the continuous and the discrete nonconservative and nonholonomic systems. Firstly, the exchanging relationships between the isochronous variation and the delta derivatives as well as the relationships between the isochronous variation and the total variation on time scales are obtained. Secondly, using the exchanging relationships, the Hamilton's principle is presented for nonconservative systems with delta derivatives and then the Lagrange equations of the systems are obtained. Thirdly, based on the quasi-invariance of Hamiltonian action of the systems under the infinitesimal transformations with respect to the time and generalized coordinates, the Noether's theorem and the conservation laws for nonconservative systems on time scales are given. Fourthly, the d'Alembert-Lagrange principle with delta derivatives is presented, and the Lagrange equations of nonholonomic systems with delta derivatives are obtained. In addition, the Noether's theorems and the conservation laws for nonholonomic systems on time scales are also obtained. Lastly, we present a new version of Noether's theorems for discrete systems. Several examples are given to illustrate the application of our results.