Due to its unique physical,chemical and surface electronic properties,molybdenum disulfide(MoS_(2))nanosheets open up a new avenue for nitrogen dioxide(NO2)detection at room temperature.Nevertheless,the gas sensing pr...Due to its unique physical,chemical and surface electronic properties,molybdenum disulfide(MoS_(2))nanosheets open up a new avenue for nitrogen dioxide(NO2)detection at room temperature.Nevertheless,the gas sensing properties of pure MoS_(2) nanosheets are inevitably degenerated by the adsorption of atmospheric oxygen,which results in weak stability for MoS_(2)-based gas sensors.Reducing surface defects and constructing heterojunctions may be effective strategies to improve the gas sensing properties of MoS_(2) nanosheets.In this work,we design a novel nanocomposite based on MoS_(2) nanosheets decorated with tin disulfide(SnS_(2))nanoparticles(MoS_(2)/SnS_(2))via combining the mechanical exfoliation method with the facile hydrothermal method.The experimental results indicate that,after surfaces decoration with SnS_(2) nanoparticles,the as-prepared gas sensor based on MoS_(2)/SnS_(2) nanocomposites exhibits reliable long-term stability with the maximum response value drift of less than 3%at room temperature.Moreover,the MoS_(2)/SnS_(2) sensor also possesses desirable gas sensing properties upon NO_(2) at room temperature,such as high sensitivity,rapid response/recovery speed(28 s/3 s,5×10^(-6) NO_(2)),satisfactory selectivity,favorable repeatability and reversibility.The improved gas sensing properties of MoS_(2)/SnS_(2) nanocomposites can be attributed to the unique electronic properties of MoS 2 nanosheets with the fewer layers structure and the competitive adsorption effect of SnS_(2) nanoparticles.This work elucidates that SnS_(2) nanoparticles serving as an effective antioxidative decoration can promote the stability of MoS_(2) nanosheets,providing a promising approach to achieve high-stability NO2 gas sensors at room temperature.展开更多
Polythiophene/WO3(PTP/WO3)organic-inorganic hybrids were synthesized by an in situ chemical oxidative polymerization method,and char- acterized by X-ray diffraction(XRD),transmission electron microscopy(TEM)and ...Polythiophene/WO3(PTP/WO3)organic-inorganic hybrids were synthesized by an in situ chemical oxidative polymerization method,and char- acterized by X-ray diffraction(XRD),transmission electron microscopy(TEM)and thermo-gravimetric analysis(TGA).The Polythiophene/ WO3 hybrids have higher thermal stability than pure polythiophene,which is beneficial to potential application as chemical sensors.Gas sensing measurements demonstrate that the gas sensor based on the Polythiophene/WO3 hybrids has high response and good selectivity for de- tecting NO2 of ppm level at low temperature.Both the operating temperature and PTP contents have an influence on the response of PTP/WO3 hybrids to NO2.The 10 wt%PTP/WO3 hybrid showed the highest response at low operating temperature of 70-C.It is expected that the PTP/WO3 hybrids can be potentially used as gas sensor material for detecting the low concentration of NO2 at low temperature.展开更多
In this work,the two-dimensional MoS2 film was prepared by sulfuring the molybdenum atomic layer on SiO2/Si substrate.The reaction temperature,heating rate,holding time and carrier gas flow rate were inve stigated com...In this work,the two-dimensional MoS2 film was prepared by sulfuring the molybdenum atomic layer on SiO2/Si substrate.The reaction temperature,heating rate,holding time and carrier gas flow rate were inve stigated compre hensively.The quality of MoS2 film was characterized by optical microscopy,atomic fo rce microscopy,Raman and photoluminescence spectro scopy.The characte rization results showed that the optimum synthesis parameters were heating rate of 25℃/min,reaction temperature of 750℃,holding time of 30 min and carrier gas velocity of 100 sccm.The MoS2 gas sensor was fabricated and its gas sensing performance was tested.The test results indicated that the sensor had a good response to both reducing gas(NH3)and oxidizing gas(NO2)at room temperature.The sensitivity to 100 ppm of NO2 was 31.3%,and the response/recovery times were 4 s and 5 s,respectively.In addition,the limit of detection could be as low as 1 ppm.This work helps us to develop low power and integrable room temperature NO2 sensors.展开更多
基金financially supported by Hunan Provincial Natural Science Foundation of China(No.2018JJ2404)the Scientific Research Foundation of Hunan Provincial Education Department(Nos.19A475 and 19C1739)Hunan Science and Technology Plan Program(No.2019RS1056)。
文摘Due to its unique physical,chemical and surface electronic properties,molybdenum disulfide(MoS_(2))nanosheets open up a new avenue for nitrogen dioxide(NO2)detection at room temperature.Nevertheless,the gas sensing properties of pure MoS_(2) nanosheets are inevitably degenerated by the adsorption of atmospheric oxygen,which results in weak stability for MoS_(2)-based gas sensors.Reducing surface defects and constructing heterojunctions may be effective strategies to improve the gas sensing properties of MoS_(2) nanosheets.In this work,we design a novel nanocomposite based on MoS_(2) nanosheets decorated with tin disulfide(SnS_(2))nanoparticles(MoS_(2)/SnS_(2))via combining the mechanical exfoliation method with the facile hydrothermal method.The experimental results indicate that,after surfaces decoration with SnS_(2) nanoparticles,the as-prepared gas sensor based on MoS_(2)/SnS_(2) nanocomposites exhibits reliable long-term stability with the maximum response value drift of less than 3%at room temperature.Moreover,the MoS_(2)/SnS_(2) sensor also possesses desirable gas sensing properties upon NO_(2) at room temperature,such as high sensitivity,rapid response/recovery speed(28 s/3 s,5×10^(-6) NO_(2)),satisfactory selectivity,favorable repeatability and reversibility.The improved gas sensing properties of MoS_(2)/SnS_(2) nanocomposites can be attributed to the unique electronic properties of MoS 2 nanosheets with the fewer layers structure and the competitive adsorption effect of SnS_(2) nanoparticles.This work elucidates that SnS_(2) nanoparticles serving as an effective antioxidative decoration can promote the stability of MoS_(2) nanosheets,providing a promising approach to achieve high-stability NO2 gas sensors at room temperature.
基金financially supported by the National Natural Science Foundation of China(No.20871071)the Science and Technology Commission Foundation of Tianjin(No.09JCYBJC03600 and 10JCYBJC03900)
文摘Polythiophene/WO3(PTP/WO3)organic-inorganic hybrids were synthesized by an in situ chemical oxidative polymerization method,and char- acterized by X-ray diffraction(XRD),transmission electron microscopy(TEM)and thermo-gravimetric analysis(TGA).The Polythiophene/ WO3 hybrids have higher thermal stability than pure polythiophene,which is beneficial to potential application as chemical sensors.Gas sensing measurements demonstrate that the gas sensor based on the Polythiophene/WO3 hybrids has high response and good selectivity for de- tecting NO2 of ppm level at low temperature.Both the operating temperature and PTP contents have an influence on the response of PTP/WO3 hybrids to NO2.The 10 wt%PTP/WO3 hybrid showed the highest response at low operating temperature of 70-C.It is expected that the PTP/WO3 hybrids can be potentially used as gas sensor material for detecting the low concentration of NO2 at low temperature.
基金supports from the National Natural Science Foundation of China(Nos.51572173,51602197,51771121 and 51702212)Shanghai Municipal Science and Technology Commission(Nos.19ZR1435200,18511110600 and 19JC1410402)+1 种基金Innovation Program of Shanghai Municipal Education Commission(No.2019-01-07-00-07-E00015)Shanghai Academic/Technology Research Leader Program(No.19XD1422900)。
文摘In this work,the two-dimensional MoS2 film was prepared by sulfuring the molybdenum atomic layer on SiO2/Si substrate.The reaction temperature,heating rate,holding time and carrier gas flow rate were inve stigated compre hensively.The quality of MoS2 film was characterized by optical microscopy,atomic fo rce microscopy,Raman and photoluminescence spectro scopy.The characte rization results showed that the optimum synthesis parameters were heating rate of 25℃/min,reaction temperature of 750℃,holding time of 30 min and carrier gas velocity of 100 sccm.The MoS2 gas sensor was fabricated and its gas sensing performance was tested.The test results indicated that the sensor had a good response to both reducing gas(NH3)and oxidizing gas(NO2)at room temperature.The sensitivity to 100 ppm of NO2 was 31.3%,and the response/recovery times were 4 s and 5 s,respectively.In addition,the limit of detection could be as low as 1 ppm.This work helps us to develop low power and integrable room temperature NO2 sensors.