期刊文献+
共找到2篇文章
< 1 >
每页显示 20 50 100
一种基于网格的最近邻SVM新算法 被引量:5
1
作者 吴渝 向浩宇 刘群 《重庆邮电大学学报(自然科学版)》 2008年第6期706-709,共4页
支持向量机(SVM)算法往往由于分类面过分复杂或过学习而导致其泛化能力降低,现有的最近邻(NN-SVM)或K近邻(K-NN-SVM)方法解决了这类样本问题,但算法时间复杂度高,处理海量样本的能力有限。在NN-SVM算法的基础上引入了网格概念,提出了G-N... 支持向量机(SVM)算法往往由于分类面过分复杂或过学习而导致其泛化能力降低,现有的最近邻(NN-SVM)或K近邻(K-NN-SVM)方法解决了这类样本问题,但算法时间复杂度高,处理海量样本的能力有限。在NN-SVM算法的基础上引入了网格概念,提出了G-NN-SVM算法,该算法先对空间进行分块,然后在空间块内计算样本距离,找出最近邻,并结合分块序列最小优化算法(SMO)进行了算法实现。实验表明,该方法降低了计算复杂度,它在保持分类精度的同时,提高了训练和分类的速度,并具有较强的泛化能力,从而提高了原NN-SVM算法的海量数据处理能力。 展开更多
关键词 支持向量机(svm) 最近邻 网格 nnsvm算法
下载PDF
一种新的支持向量分类算法ACNN-SVM 被引量:2
2
作者 业巧林 业宁 +2 位作者 张训华 武波 宋爱美 《郑州大学学报(理学版)》 CAS 2008年第3期56-58,共3页
针对NN-SVM算法的不足,提出了一种新的支持向量分类算法——ACNN-SVM.先对训练样本集进行最近邻修剪,用SVM训练得到一个SVM模型,然后,计算最近邻修剪后的训练样本集中样本到超平面的距离,如果距离差大于给定的阈值则将其从最近邻修剪后... 针对NN-SVM算法的不足,提出了一种新的支持向量分类算法——ACNN-SVM.先对训练样本集进行最近邻修剪,用SVM训练得到一个SVM模型,然后,计算最近邻修剪后的训练样本集中样本到超平面的距离,如果距离差大于给定的阈值则将其从最近邻修剪后的训练样本集中删除,最后对再修剪后的样本集用SVM训练得到一个最终的SVM模型.实验表明,ACNN-SVM算法的效果优于NN-SVM算法. 展开更多
关键词 nn-svm算法 ACnn-svm算法 超平面距离 阈值
下载PDF
上一页 1 下一页 到第
使用帮助 返回顶部