The hull form optimization concerns one of the most important applications of wave making resistance theories. In order to obtain a hull form with the minimum wave making resistance, an optimization design method base...The hull form optimization concerns one of the most important applications of wave making resistance theories. In order to obtain a hull form with the minimum wave making resistance, an optimization design method based on the CFD is proposed, which combines the Rankine source method with the nonlinear programming (NLP). The bow-body shape is optimized with the minimum wave making resistance as the objective function. A hull form modification function is introduced to represent an improved hull surface, which can be used to generate a new smooth hull surface by multiplying it by the offset data of the original hull surface. The parameters of the hull form modification function are taken as the design variables. Other constraint conditions can also be considered, for example, in optimizing the lines of the bow, appropriate displacements can be taken as the basic constraints. S60 hull form is selected as the original hull. Three improved hulls are obtained by optimal design. Rankine source method proves to be an effective method in ship form optimization based on analysis of the resistance performance and lines of the improved hull.展开更多
文摘The hull form optimization concerns one of the most important applications of wave making resistance theories. In order to obtain a hull form with the minimum wave making resistance, an optimization design method based on the CFD is proposed, which combines the Rankine source method with the nonlinear programming (NLP). The bow-body shape is optimized with the minimum wave making resistance as the objective function. A hull form modification function is introduced to represent an improved hull surface, which can be used to generate a new smooth hull surface by multiplying it by the offset data of the original hull surface. The parameters of the hull form modification function are taken as the design variables. Other constraint conditions can also be considered, for example, in optimizing the lines of the bow, appropriate displacements can be taken as the basic constraints. S60 hull form is selected as the original hull. Three improved hulls are obtained by optimal design. Rankine source method proves to be an effective method in ship form optimization based on analysis of the resistance performance and lines of the improved hull.