The development of cost-effective oxygen reduction reaction (ORR) catalysts with a high methanol tolerance and enhanced durability is highly desirable for direct methanol fuel cells. This work focuses on the convers...The development of cost-effective oxygen reduction reaction (ORR) catalysts with a high methanol tolerance and enhanced durability is highly desirable for direct methanol fuel cells. This work focuses on the conversion of PtNi nanoparticles from a disordered solid solution to an ordered intermetallic compound. Here the effect of this conversion on ORR activity, durability, and methanol tolerance are characterized. X-ray diffraction and transmission electron microscopy results confirm the formation of ordered PtNi intermetallic nanoparticles with high dispersion and a mean particle size of about 7.6 nm. The PtNi intermetallic nanoparticles exhibited enhanced mass and specific activities toward the methanol-tolerant ORR in pure and methanol-containing electrolytes. The specific activity of the ORR at 0.85 V on the PtNi intermetallic nanoparticles is almost 6 times greater than on commercial Pt/C and 3 times greater than on disordered PtNi alloy. Durability tests indicated a minimal loss of ORR activity for PtNi intermetallic nanoparticles after 5,000 potential cycles, whereas the ORR activity decreased by 28% for disordered PtNi alloy. The enhanced methanoltolerant ORR activity and durability may be attributed to the structural and compositional stabilities of the ordered PtNi intermetallic nanoparticles compared relative to the stabilities of the disordered PtNi alloy, strongly suggesting that the PtNi intermetallic nanoparticles may serve as highly active and durable methanol-tolerant ORR electrocatalysts for practical applications.展开更多
We investigated the influence of minor additions of B,Al and Nb that have representative atomic sizes on the glass forming ability (GFA) and stability of Zr-Ni amorphous alloys during mechanical alloying. The results ...We investigated the influence of minor additions of B,Al and Nb that have representative atomic sizes on the glass forming ability (GFA) and stability of Zr-Ni amorphous alloys during mechanical alloying. The results show that the minor addition of B,Al or Nb does not shorten the initial time of the full amorphization reaction or improve the glass forming ability of the Zr-Ni alloys at a low rotation speed. However,B addition can effectively improve the mechanical stability of the amorphous phase against mechanically induced crystallization. Furthermore,the amorphous phase gradually transforms into a metastable fcc-phase with increasing milling time. The addition of Al and Nb that have similar atomic sizes has a similar effect on the GFA and the mechani-cal stability of the Zr-Ni amorphous phase. Moreover,Al and Nb addition can alter the crystallization behavior and improve the thermal stability of the Zr-Ni amorphous phase.展开更多
Nb can improve the resistance of Ni-based Hastelloy N alloy to Te-induced intergranular embrittlement.First-principles calculations are performed to research this mechanism by simulating the Ni(111) surface and the 5(...Nb can improve the resistance of Ni-based Hastelloy N alloy to Te-induced intergranular embrittlement.First-principles calculations are performed to research this mechanism by simulating the Ni(111) surface and the 5(012) grain boundary. The calculated adsorption energy suggests that Te atoms prefer diffusing along the grain boundary to forming the surface-reaction layer with Nb on surface of the Ni alloy. First-principles tensile tests show that the Nb segregation can enhance the cohesion of grain boundary. The strong Nb-Ni bonding can prevent the Te migration into the inside of the alloy. According to the Rice-Wang model, the strengthening/embrittling energies of Nb and Te are calculated, along with their mechanical and chemical components.The chemical bonds and electronic structures are analyzed to uncover the physical origin of the different effects of Te and Nb. Our work sheds lights on the effect of Nb additive on the Te-induced intergranular embrittlement in Hastelloy N alloy on the atomic and electronic level.展开更多
Sn-Ni alloy films for Li-ion batteries were fabricated by electrochemical deposition with rough copper foils as current collectors.The influence of electrochemical-deposition temperature and heat treatment were also i...Sn-Ni alloy films for Li-ion batteries were fabricated by electrochemical deposition with rough copper foils as current collectors.The influence of electrochemical-deposition temperature and heat treatment were also investigated.By galvanostatic cell cycling the film anodes can deliver a steady specific capacity.The morphological changes cause the differences in capacity retention. After farther heat treatment,the film anodes present a better cycle performance,with a specific capacity of 314 mA·h/g after 100 cycles.This high capacity retention can be due to its smooth,compact surface formed in the heat treatment process.展开更多
Mg-8Sn-1Al-1Zn-xNi(x=0.5%, 1.0%, 1.5%, 2.0%, mass fraction) alloys were designed and prepared. The microstructures and the mechanical properties were studied by using optical microscope, scanning electronic microscope...Mg-8Sn-1Al-1Zn-xNi(x=0.5%, 1.0%, 1.5%, 2.0%, mass fraction) alloys were designed and prepared. The microstructures and the mechanical properties were studied by using optical microscope, scanning electronic microscope, energy dispersive X-ray spectroscope, X-ray diffraction and a standard universal testing machine. The results show that the microstructure of Ni-containing alloys consist of α-Mg, Mg2 Sn, β-Mg-Ni-Al and γ-AlNi phases. No β-Mg-Ni-Al phase was observed in TAZ811-2.0Ni alloy due to its 1:1 atomic ratio of Ni/Al. The addition of Ni refines the α-Mg dendrites and suppresses the formation of coarse Mg2 Sn phase. The tensile properties results show that the TAZ811-0.5Ni alloy presented the best mechanical properties, which is due to the rod-like β-Mg-Ni-Al phase, refined α-Mg dendrites and Mg2 Sn phase, as well as γ-AlNi phase. The tensile fracture mechanism transits from cleavage to quasi-cleavage fracture with the increasing Ni addition.展开更多
Degradation phenomena like wear and corrosion, may have their effects accelerated as components operate at high temperature. The aim of this work is to make an indirect evaluation of the influence of high temperature ...Degradation phenomena like wear and corrosion, may have their effects accelerated as components operate at high temperature. The aim of this work is to make an indirect evaluation of the influence of high temperature exposure on wear behavior of Ni coatings. A Ni-Cr-Mo-W alloy, was deposited with Plasma Transferred Arc (PTA) process. An indirect approach based on the Ahrrenius relationship was used to evaluated long time exposures at high temperatures. To simulate longer exposures at lower temperatures, coatings were exposed to higher temperatures for the same time interval. So coatings were soaked in an air furnace at 650°C, 1000°C and 1200°C. Metal/metal wear behavior was evaluated by pin-on-disc tests. Pins were removed from the coatings by eletrodischarge machining and rubbed against a VC31 quenched and tempered tool steel. Two sets of wear tests were run at 2m/s, for different loads (0.5, 1.0, 2.0 and 3.0Kg) and for different sliding distances (120, 720, 1080, 1440 and 1800m).Coatings characterization was done by scanning electronic microscopy and Vickers microhardness. Results showed as temperature is increased, coatings wear performance is altered, and this is associated with microstructural changes.展开更多
文摘The development of cost-effective oxygen reduction reaction (ORR) catalysts with a high methanol tolerance and enhanced durability is highly desirable for direct methanol fuel cells. This work focuses on the conversion of PtNi nanoparticles from a disordered solid solution to an ordered intermetallic compound. Here the effect of this conversion on ORR activity, durability, and methanol tolerance are characterized. X-ray diffraction and transmission electron microscopy results confirm the formation of ordered PtNi intermetallic nanoparticles with high dispersion and a mean particle size of about 7.6 nm. The PtNi intermetallic nanoparticles exhibited enhanced mass and specific activities toward the methanol-tolerant ORR in pure and methanol-containing electrolytes. The specific activity of the ORR at 0.85 V on the PtNi intermetallic nanoparticles is almost 6 times greater than on commercial Pt/C and 3 times greater than on disordered PtNi alloy. Durability tests indicated a minimal loss of ORR activity for PtNi intermetallic nanoparticles after 5,000 potential cycles, whereas the ORR activity decreased by 28% for disordered PtNi alloy. The enhanced methanoltolerant ORR activity and durability may be attributed to the structural and compositional stabilities of the ordered PtNi intermetallic nanoparticles compared relative to the stabilities of the disordered PtNi alloy, strongly suggesting that the PtNi intermetallic nanoparticles may serve as highly active and durable methanol-tolerant ORR electrocatalysts for practical applications.
基金supported by the National Natural Science Foundation of China (50801031)the Doctoral Foundation of University of Jinan (XBS1009)
文摘We investigated the influence of minor additions of B,Al and Nb that have representative atomic sizes on the glass forming ability (GFA) and stability of Zr-Ni amorphous alloys during mechanical alloying. The results show that the minor addition of B,Al or Nb does not shorten the initial time of the full amorphization reaction or improve the glass forming ability of the Zr-Ni alloys at a low rotation speed. However,B addition can effectively improve the mechanical stability of the amorphous phase against mechanically induced crystallization. Furthermore,the amorphous phase gradually transforms into a metastable fcc-phase with increasing milling time. The addition of Al and Nb that have similar atomic sizes has a similar effect on the GFA and the mechani-cal stability of the Zr-Ni amorphous phase. Moreover,Al and Nb addition can alter the crystallization behavior and improve the thermal stability of the Zr-Ni amorphous phase.
基金Supported by Science and Technology Commission of Shanghai Municipality(No.11JC1414900)Project supported by the National Basic Research Program of China(No.2010CB934501)+2 种基金Thorium Molten Salts Reactor Fund(No.XDA02000000)the National Natural Science Foundation of China(No.11005148),the National Natural Science Foundation of China(No.51371188)the Special Presidential Foundation of the Chinese Academy of Science,China(No.29)
文摘Nb can improve the resistance of Ni-based Hastelloy N alloy to Te-induced intergranular embrittlement.First-principles calculations are performed to research this mechanism by simulating the Ni(111) surface and the 5(012) grain boundary. The calculated adsorption energy suggests that Te atoms prefer diffusing along the grain boundary to forming the surface-reaction layer with Nb on surface of the Ni alloy. First-principles tensile tests show that the Nb segregation can enhance the cohesion of grain boundary. The strong Nb-Ni bonding can prevent the Te migration into the inside of the alloy. According to the Rice-Wang model, the strengthening/embrittling energies of Nb and Te are calculated, along with their mechanical and chemical components.The chemical bonds and electronic structures are analyzed to uncover the physical origin of the different effects of Te and Nb. Our work sheds lights on the effect of Nb additive on the Te-induced intergranular embrittlement in Hastelloy N alloy on the atomic and electronic level.
基金Project(20070410219)supported by China Postdoctoral Science FoundationProject(20703013)supported by the National Natural Science Foundation of China
文摘Sn-Ni alloy films for Li-ion batteries were fabricated by electrochemical deposition with rough copper foils as current collectors.The influence of electrochemical-deposition temperature and heat treatment were also investigated.By galvanostatic cell cycling the film anodes can deliver a steady specific capacity.The morphological changes cause the differences in capacity retention. After farther heat treatment,the film anodes present a better cycle performance,with a specific capacity of 314 mA·h/g after 100 cycles.This high capacity retention can be due to its smooth,compact surface formed in the heat treatment process.
基金Projects supported by the Shanxi Selective Funds for Returned Scholars,ChinaProject(2013021013-4)supported by the Shanxi Province Science Foundation for Youths China+1 种基金Projects(2012L053,2012L003)supported by the Taiyuan University of Technology Funds for Young Scientists,ChinaProject(2014021017-2)supported by the Natural Science Foundation for Young Scientists for Shanxi Province,China
文摘Mg-8Sn-1Al-1Zn-xNi(x=0.5%, 1.0%, 1.5%, 2.0%, mass fraction) alloys were designed and prepared. The microstructures and the mechanical properties were studied by using optical microscope, scanning electronic microscope, energy dispersive X-ray spectroscope, X-ray diffraction and a standard universal testing machine. The results show that the microstructure of Ni-containing alloys consist of α-Mg, Mg2 Sn, β-Mg-Ni-Al and γ-AlNi phases. No β-Mg-Ni-Al phase was observed in TAZ811-2.0Ni alloy due to its 1:1 atomic ratio of Ni/Al. The addition of Ni refines the α-Mg dendrites and suppresses the formation of coarse Mg2 Sn phase. The tensile properties results show that the TAZ811-0.5Ni alloy presented the best mechanical properties, which is due to the rod-like β-Mg-Ni-Al phase, refined α-Mg dendrites and Mg2 Sn phase, as well as γ-AlNi phase. The tensile fracture mechanism transits from cleavage to quasi-cleavage fracture with the increasing Ni addition.
文摘Degradation phenomena like wear and corrosion, may have their effects accelerated as components operate at high temperature. The aim of this work is to make an indirect evaluation of the influence of high temperature exposure on wear behavior of Ni coatings. A Ni-Cr-Mo-W alloy, was deposited with Plasma Transferred Arc (PTA) process. An indirect approach based on the Ahrrenius relationship was used to evaluated long time exposures at high temperatures. To simulate longer exposures at lower temperatures, coatings were exposed to higher temperatures for the same time interval. So coatings were soaked in an air furnace at 650°C, 1000°C and 1200°C. Metal/metal wear behavior was evaluated by pin-on-disc tests. Pins were removed from the coatings by eletrodischarge machining and rubbed against a VC31 quenched and tempered tool steel. Two sets of wear tests were run at 2m/s, for different loads (0.5, 1.0, 2.0 and 3.0Kg) and for different sliding distances (120, 720, 1080, 1440 and 1800m).Coatings characterization was done by scanning electronic microscopy and Vickers microhardness. Results showed as temperature is increased, coatings wear performance is altered, and this is associated with microstructural changes.