期刊文献+
共找到1篇文章
< 1 >
每页显示 20 50 100
复杂场景下深度表示的SAR船舶目标检测算法 被引量:4
1
作者 袁国文 张彩霞 +2 位作者 杨阳 张文生 白江波 《计算机工程与应用》 CSCD 北大核心 2022年第2期289-294,共6页
雷达图像目标检测是国家海洋军事和经济发展的重点研究领域。与被动成像的光学雷达相比,合成孔径雷达(synthetic aperture radar,SAR)由于其高分辨率、全天候、全天时、主动式等特点,成为20世纪以来多国雷达研究的重要组成部分。图像目... 雷达图像目标检测是国家海洋军事和经济发展的重点研究领域。与被动成像的光学雷达相比,合成孔径雷达(synthetic aperture radar,SAR)由于其高分辨率、全天候、全天时、主动式等特点,成为20世纪以来多国雷达研究的重要组成部分。图像目标检测是雷达图像解译的基础。提出一种复杂场景下深度表示的SAR船舶目标检测算法,针对SAR图像目标检测模型无法专注困难样本以及解决FPN多尺度金字塔融合的问题,提出将Libra R-CNN网络与NAS-FPN特征提取网络相结合。其中Libra R-CNN网络在采样、特征、目标三种水平分别具有先进的IoU平衡采样、平衡特征金字塔、平衡L1损失方法,同时将Libra R-CNN模型中的FPN特征提取网络替换为在COCO数据集中借助神经架构搜索(neural architecture search,NAS)方法形成的7层NAS-FPN网络。模型最终在SAR船舶数据集中进行了对比实验,与原先的NAS-FPN网络相比,组合后的网络平均精度提高了4.4个百分点,证明了模型融合后的有效性。 展开更多
关键词 合成孔径雷达(SAR)图像 目标检测 Libra R-CNN网络 nas-fpn网络
下载PDF
上一页 1 下一页 到第
使用帮助 返回顶部