针对工程造价影响因素多,预测困难且周期长等问题,通过将主成分分析和NARX(Non-linear Auto-Regressive with Exogenous inputs)神经网络相结合,提出一种新型基于混合算法的市政工程造价预测方法。利用主成分分析对影响市政工程造价的...针对工程造价影响因素多,预测困难且周期长等问题,通过将主成分分析和NARX(Non-linear Auto-Regressive with Exogenous inputs)神经网络相结合,提出一种新型基于混合算法的市政工程造价预测方法。利用主成分分析对影响市政工程造价的主要影响因素进行原始数据处理,消除其相关性,可有效降低数据冗余,也降低神经网络运算易出现局部极小点概率。以主成分分析数据作为输入,单位面积工程造价作为输出,采用贝叶斯正则化算法构建的NARX网络神经模型进行市政工程造价预测。算例结果表明,基于PCA与NARX进行市政工程造价快速、准确,证明预测有效可行。展开更多
为了提高电力负荷预测精度,提出一种基于自适应噪声的完全集成经验模态分解(complete ensemble empirical mode decomposition with adaptive noise,简称CEEMDAN)算法和外部输入非线性自回归(nonlinear auto regressive with exogenous ...为了提高电力负荷预测精度,提出一种基于自适应噪声的完全集成经验模态分解(complete ensemble empirical mode decomposition with adaptive noise,简称CEEMDAN)算法和外部输入非线性自回归(nonlinear auto regressive with exogenous inputs,简称NARX)神经网络的短期负荷预测模型.首先,通过CEEMDAN算法对电力负荷原始信号进行分解,得到若干个本征模态函数分量和1个残差分量;然后,将得到的若干个本征模态函数分量和1个残差分量输入NARX神经网络进行预测;最后,将各分量的预测结果进行叠加得到短期负荷预测的最终结果.实验结果表明:CEEMDAN算法与NARX神经网络相结合的负荷预测模型有较强的收敛性能,能减少噪声对预测结果的不良影响、有效提高预测精度.展开更多
针对医疗电子设备锂电池不确定性发生故障耽误病人救治的问题,提出了一套医疗电子设备锂电池故障预测与健康管理系统(Prognostics and Health Management-PHM);搭建了一套医疗电子设备锂电池数据测试与退化状态模拟的实验平台;为了反映...针对医疗电子设备锂电池不确定性发生故障耽误病人救治的问题,提出了一套医疗电子设备锂电池故障预测与健康管理系统(Prognostics and Health Management-PHM);搭建了一套医疗电子设备锂电池数据测试与退化状态模拟的实验平台;为了反映医疗电子设备锂电池健康状态,将锂电池四个健康因子作为医疗电子设备锂电池退化状态的特征进行提取,并通过非线性自回归(Nonlinear Autogressive with Exogenous Inputs-NARX)神经网络,对四个健康因子的数据进行训练,训练后用于容量估计,得出等间隔放电时间序列能够较好地表征锂电池健康状态;为了提高基本粒子滤波算法(Particle Filter-PF)的精度从而更精确地预测锂电池剩余寿命(Remaing Useful Life-RUL),通过人工免疫粒子滤波算法(Artificial Immune Particle FilterAIPF)与经验模型对锂电池进行剩余寿命预测,并将PF预测的结果与AIPF预测的结果进行对比,发现AIPF预测更加准确,说明AIPF有效抑制了PF重采样过程中粒子退化问题,验证了医疗电子设备锂电池故障预测与健康管理系统的可行性与可实施性。展开更多
针对多种水工建筑物相互作用和影响下的泵站水位预测难题,提出基于GRA-NARX(grey relation analysis-nonlinear autoregressive model with exogenous inputs)神经网络的泵站站前水位预测模型。该模型包括灰色关联分析(GRA)和NARX神经...针对多种水工建筑物相互作用和影响下的泵站水位预测难题,提出基于GRA-NARX(grey relation analysis-nonlinear autoregressive model with exogenous inputs)神经网络的泵站站前水位预测模型。该模型包括灰色关联分析(GRA)和NARX神经网络两部分,利用3种训练算法和不同时间延迟分别对密云水库调蓄工程屯佃泵站站前水位进行2 h预测,并与NARX模型和GRA-BP(grey relation analysis-back propagation)模型的预测结果进行比较。研究结果表明,GRA-NARX-BR(grey relation analysis-nonlinear autoregressive model with exogenous inputs-bayesian regularization)模型用于水位预测能够比较全面地考虑影响因子,预测精度高,相关系数最高达0.986 62,均方根误差最小为0.008 6 m,预测效果比NARX模型和GRA-BP模型好,且时间延迟越长,均方根误差越小。模型也可在其他调水工程中推广使用。展开更多
文摘针对工程造价影响因素多,预测困难且周期长等问题,通过将主成分分析和NARX(Non-linear Auto-Regressive with Exogenous inputs)神经网络相结合,提出一种新型基于混合算法的市政工程造价预测方法。利用主成分分析对影响市政工程造价的主要影响因素进行原始数据处理,消除其相关性,可有效降低数据冗余,也降低神经网络运算易出现局部极小点概率。以主成分分析数据作为输入,单位面积工程造价作为输出,采用贝叶斯正则化算法构建的NARX网络神经模型进行市政工程造价预测。算例结果表明,基于PCA与NARX进行市政工程造价快速、准确,证明预测有效可行。
文摘为了提高电力负荷预测精度,提出一种基于自适应噪声的完全集成经验模态分解(complete ensemble empirical mode decomposition with adaptive noise,简称CEEMDAN)算法和外部输入非线性自回归(nonlinear auto regressive with exogenous inputs,简称NARX)神经网络的短期负荷预测模型.首先,通过CEEMDAN算法对电力负荷原始信号进行分解,得到若干个本征模态函数分量和1个残差分量;然后,将得到的若干个本征模态函数分量和1个残差分量输入NARX神经网络进行预测;最后,将各分量的预测结果进行叠加得到短期负荷预测的最终结果.实验结果表明:CEEMDAN算法与NARX神经网络相结合的负荷预测模型有较强的收敛性能,能减少噪声对预测结果的不良影响、有效提高预测精度.
文摘针对医疗电子设备锂电池不确定性发生故障耽误病人救治的问题,提出了一套医疗电子设备锂电池故障预测与健康管理系统(Prognostics and Health Management-PHM);搭建了一套医疗电子设备锂电池数据测试与退化状态模拟的实验平台;为了反映医疗电子设备锂电池健康状态,将锂电池四个健康因子作为医疗电子设备锂电池退化状态的特征进行提取,并通过非线性自回归(Nonlinear Autogressive with Exogenous Inputs-NARX)神经网络,对四个健康因子的数据进行训练,训练后用于容量估计,得出等间隔放电时间序列能够较好地表征锂电池健康状态;为了提高基本粒子滤波算法(Particle Filter-PF)的精度从而更精确地预测锂电池剩余寿命(Remaing Useful Life-RUL),通过人工免疫粒子滤波算法(Artificial Immune Particle FilterAIPF)与经验模型对锂电池进行剩余寿命预测,并将PF预测的结果与AIPF预测的结果进行对比,发现AIPF预测更加准确,说明AIPF有效抑制了PF重采样过程中粒子退化问题,验证了医疗电子设备锂电池故障预测与健康管理系统的可行性与可实施性。