期刊文献+
共找到2篇文章
< 1 >
每页显示 20 50 100
Wavelet Neural Network Based on NARMA-L2 Model for Prediction of Thermal Characteristics in a Feed System 被引量:8
1
作者 JIN Chao WU Bo HU Youmin 《Chinese Journal of Mechanical Engineering》 SCIE EI CAS CSCD 2011年第1期33-41,共9页
Research of thermal characteristics has been a key issue in the development of high-speed feed system. Most of the work carried out thus far is based on the principle of directly mapping the thermal error against the ... Research of thermal characteristics has been a key issue in the development of high-speed feed system. Most of the work carried out thus far is based on the principle of directly mapping the thermal error against the temperature of critical machine elements irrespective of the operating conditions. But recent researches show that different sets of operating parameters generated significantly different error values even though the temperature of the machine elements generated was similar. As such, it is important to develop a generic thermal error model which is capable of evaluating the positioning error induced by different operating parameters. This paper ultimately aims at the development of a comprehensive prediction model that can predict the thermal characteristics under different operating conditions (feeding speed, load and preload of ballscrew) in a feed system. A novel wavelet neural network based on feedback linearization autoregressive moving averaging (NARMA-L2) model is introduced to predict the temperature rise of sensitive points and thermal positioning errors considering the different operating conditions as the model inputs. Particle swarm optimization(PSO) algorithm is brought in as the training method. According to ISO230-2 Positioning Accuracy Measurement and ISO230-3 Thermal Effect Evaluation standards, experiments under different operating conditions were carried out on a self-made quasi high-speed feed system experimental bench HUST-FS-001 by using Pt100 as temperature sensor, and the positioning errors were measured by Heidenhain linear grating scale. The experiment results show that the recommended method can be used to predict temperature rise of sensitive points and thermal positioning errors with good accuracy. The work described in this paper lays a solid foundation of thermal error prediction and compensation in a feed system based on varying operating conditions and machine tool characteristics. 展开更多
关键词 wavelet neural network narma-l2 model particle swarm optimization thermal positioning error feed system
下载PDF
NARMA-L2模型的改进及其神经网络自校正控制器 被引量:5
2
作者 侯小秋 李丽华 《黑龙江科技大学学报》 2021年第6期782-787,共6页
带预测误差补偿的NARMA-L2模型是由NARMA模型在零工作点处由一阶泰勒展开逼近的,其误差项取值较大。通过分析NARMA-L2模型存在误差项值较大的问题,利用自适应滤波动态工作点处由一阶泰勒展开逼近NARMA模型,构建改进的NARMA-L2模型,采用B... 带预测误差补偿的NARMA-L2模型是由NARMA模型在零工作点处由一阶泰勒展开逼近的,其误差项取值较大。通过分析NARMA-L2模型存在误差项值较大的问题,利用自适应滤波动态工作点处由一阶泰勒展开逼近NARMA模型,构建改进的NARMA-L2模型,采用BP神经网络辨识改进NARMA-L2模型的参数,基于广义目标函数与改进的NARMA-L2模型给出了非线性系统的隐式自校正控制器算法,以直接极小化指标函数的自适应优化算法寻优BP神经网络的连接权重值,获得了一种新的在线学习算法。研究表明,改进模型误差值较传统NARMA-L2模型小,控制算法使系统具有优良的控制效果。 展开更多
关键词 神经网络控制 自校正控制 非线性系统 narma-l2模型 广义目标函数
下载PDF
上一页 1 下一页 到第
使用帮助 返回顶部