Crystalline Fe/MnO@C core–shell nanocapsules inlaid in porous amorphous carbon matrix(FMCA)was synthesized successfully with a novel confinement strategy.The heterogeneous Fe/MnO nanocrystals are with approximate sin...Crystalline Fe/MnO@C core–shell nanocapsules inlaid in porous amorphous carbon matrix(FMCA)was synthesized successfully with a novel confinement strategy.The heterogeneous Fe/MnO nanocrystals are with approximate single-domain size which gives rise to natural resonance in 2–18 GHz.The addition of MnO2 confines degree of graphitization catalyzed by iron and contributes to the formation of amorphous carbon.The heterogeneous materials composed of crystalline–amorphous structures disperse evenly and its density is significantly reduced on account of porous properties.Meanwhile,adjustable dielectric loss is achieved by interrupting Fe core aggregation and stacking graphene conductive network.The dielectric loss synergistically with magnetic loss endows the FMCA enhanced absorption.The optimal reflection loss(RL)is up to−45 dB,and the effective bandwidth(RL<−10 dB)is 5.0 GHz with 2.0 mm thickness.The proposed confinement strategy not only lays the foundation for designing high-performance microwave absorber,but also offers a general duty synthesis method for heterogeneous crystalline–amorphous composites with tunable composition in other fields.展开更多
Biodegradable triblock copolymer PLA/PEG/PLA was synthesized by ring-opening bulk polymerization of D,L-lactide in the presence of poly(ethylene glycol) (PEG), in the molecular structure of which, the length of PEG an...Biodegradable triblock copolymer PLA/PEG/PLA was synthesized by ring-opening bulk polymerization of D,L-lactide in the presence of poly(ethylene glycol) (PEG), in the molecular structure of which, the length of PEG and PLA chain segments was made to be quite different. Nanoparticles were prepared by using the copolymer via a double emulsion-evaporation technique. The paticles tended to form the configuration like capsules, i.e., the nanocapsules, because of the great size difference in PEG and PLA segments of the copolymer. Insulin, chosen as a model drug, was encapsulated into nanocapsules. The effect of preparation conditions on the size, insulin encapsulation efficiency, and in vitro drug release behavour of the nanoparticles were investigated. The experimental results show that the nanocapsules had a smooth spherical surface and the mean diameter was in the range from 180 nm to 350 nm, and the entrapment of insulin achieved up to 78.4. The drug-loaded nanocapsules released their content continuously, remarkably different from the corresponding micelles which gave a significant initial burst release followed by a slow release.展开更多
Protein therap34 wherein therapeutic proteins are delivered to treat disorders, is considered the safest and most direct approach for treating diseases. However, its applications are highly limited by the paucity of e...Protein therap34 wherein therapeutic proteins are delivered to treat disorders, is considered the safest and most direct approach for treating diseases. However, its applications are highly limited by the paucity of efficient strategies for delivering proteins and the rapid clearance of therapeutic proteins in vivo after their administration. Here, we demonstrate a novel strategy that can significantly prolong the circulation time of therapeutic proteins as well as minimize their immunogenicity. This is achieved by encapsulating individual protein molecules with a thin layer of crosslinked phosphorylcholine polymer that resists protein adsorption. Through extensive cellular studies, we demonstrate that the crosslinked phosphorylcholine polymer shell effectively prevents the encapsulated protein from being phagocytosed by macrophages, which play an essential role in the clearance of nanoparfides in vivo. Moreover, the polymer shell prevents the encapsulated protein from being identified by immune cells. As a result, immune responses against the therapeutic protein are effectively suppressed. This work describes a feasible method to prolong the circulation time and reduce the immunogenicity of therapeutic proteins, which may promote the development and application of novel protein therapies in the treatment of diverse diseases.展开更多
基金Supported by Program for the National Natural Science Foundation of China (Nos. 51577021 and U1704253)the Fundamental Research Funds for the Central Universities (DUT17GF107)
文摘Crystalline Fe/MnO@C core–shell nanocapsules inlaid in porous amorphous carbon matrix(FMCA)was synthesized successfully with a novel confinement strategy.The heterogeneous Fe/MnO nanocrystals are with approximate single-domain size which gives rise to natural resonance in 2–18 GHz.The addition of MnO2 confines degree of graphitization catalyzed by iron and contributes to the formation of amorphous carbon.The heterogeneous materials composed of crystalline–amorphous structures disperse evenly and its density is significantly reduced on account of porous properties.Meanwhile,adjustable dielectric loss is achieved by interrupting Fe core aggregation and stacking graphene conductive network.The dielectric loss synergistically with magnetic loss endows the FMCA enhanced absorption.The optimal reflection loss(RL)is up to−45 dB,and the effective bandwidth(RL<−10 dB)is 5.0 GHz with 2.0 mm thickness.The proposed confinement strategy not only lays the foundation for designing high-performance microwave absorber,but also offers a general duty synthesis method for heterogeneous crystalline–amorphous composites with tunable composition in other fields.
文摘Biodegradable triblock copolymer PLA/PEG/PLA was synthesized by ring-opening bulk polymerization of D,L-lactide in the presence of poly(ethylene glycol) (PEG), in the molecular structure of which, the length of PEG and PLA chain segments was made to be quite different. Nanoparticles were prepared by using the copolymer via a double emulsion-evaporation technique. The paticles tended to form the configuration like capsules, i.e., the nanocapsules, because of the great size difference in PEG and PLA segments of the copolymer. Insulin, chosen as a model drug, was encapsulated into nanocapsules. The effect of preparation conditions on the size, insulin encapsulation efficiency, and in vitro drug release behavour of the nanoparticles were investigated. The experimental results show that the nanocapsules had a smooth spherical surface and the mean diameter was in the range from 180 nm to 350 nm, and the entrapment of insulin achieved up to 78.4. The drug-loaded nanocapsules released their content continuously, remarkably different from the corresponding micelles which gave a significant initial burst release followed by a slow release.
基金This work is supported by the National Natural Science Foundation of China (NSFC, Nos. 91127045, 51390483, 51473319, 51303025, 81401439 and 51343007), YG2012MS38 and China Postdoctoral Science Foundation (No. 2014M551399).
文摘Protein therap34 wherein therapeutic proteins are delivered to treat disorders, is considered the safest and most direct approach for treating diseases. However, its applications are highly limited by the paucity of efficient strategies for delivering proteins and the rapid clearance of therapeutic proteins in vivo after their administration. Here, we demonstrate a novel strategy that can significantly prolong the circulation time of therapeutic proteins as well as minimize their immunogenicity. This is achieved by encapsulating individual protein molecules with a thin layer of crosslinked phosphorylcholine polymer that resists protein adsorption. Through extensive cellular studies, we demonstrate that the crosslinked phosphorylcholine polymer shell effectively prevents the encapsulated protein from being phagocytosed by macrophages, which play an essential role in the clearance of nanoparfides in vivo. Moreover, the polymer shell prevents the encapsulated protein from being identified by immune cells. As a result, immune responses against the therapeutic protein are effectively suppressed. This work describes a feasible method to prolong the circulation time and reduce the immunogenicity of therapeutic proteins, which may promote the development and application of novel protein therapies in the treatment of diverse diseases.