期刊文献+
共找到2篇文章
< 1 >
每页显示 20 50 100
一种改进的YOLOv7-OBB舰船识别方法
1
作者 孙宏磊 陈雯柏 刘辉翔 《兵器装备工程学报》 CAS CSCD 北大核心 2024年第8期192-198,共7页
为解决高分辨率遥感图像中舰船识别准确率低的问题,提出了一种改进的YOLOv7-OBB舰船识别方法。引入定向检测框OBB(oriented bounding box)和KLD损失,可有效解决舰船密集排列和比例细长且方向任意所产生的漏检问题,在提高定位精度的同时... 为解决高分辨率遥感图像中舰船识别准确率低的问题,提出了一种改进的YOLOv7-OBB舰船识别方法。引入定向检测框OBB(oriented bounding box)和KLD损失,可有效解决舰船密集排列和比例细长且方向任意所产生的漏检问题,在提高定位精度的同时保留了船只的目标方向信息;在YOLOv7基础框架的主干网络加入混合注意力模块ACmix,加强网络对于小目标检测的敏感度,能够提升对小型船只的检测精度;在颈部加入全局注意力机制(NAMAttention)和Partial卷积(PConv),在保证模型轻量化的同时,可提高PAN网络在复杂背景中捕捉关键特征的能力。实验结果表明,与YOLOv7模型相比,该方法在DOTAships数据集上取得了88.5%的平均精度,93.0%的准确率,84.7%的召回率,分别比YOLOv7提高了5%,0.9%和3.9%。与当前主流算法相比,该方法在检测效果上有着明显提升。 展开更多
关键词 YOLOv7-OBB算法 舰船识别 定向检测框 混合注意力模块 全局注意力机制 Partial卷积
下载PDF
基于Faster-NAM-YOLO的黄瓜霜霉病菌孢子检测 被引量:2
2
作者 乔琛 韩梦瑶 +3 位作者 高苇 李凯雨 朱昕怡 张领先 《农业机械学报》 EI CAS CSCD 北大核心 2023年第12期288-299,共12页
黄瓜霜霉病由古巴假霜霉病菌孢子通过侵染引起,严重影响了黄瓜的品质和产量;病菌孢子数量与病情严重度相关,因此建立快速、简便和高效的病菌孢子定量检测方法,实现黄瓜霜霉病防治关口前移。基于YOLO v5模型提出了一种基于Faster-NAM-YOL... 黄瓜霜霉病由古巴假霜霉病菌孢子通过侵染引起,严重影响了黄瓜的品质和产量;病菌孢子数量与病情严重度相关,因此建立快速、简便和高效的病菌孢子定量检测方法,实现黄瓜霜霉病防治关口前移。基于YOLO v5模型提出了一种基于Faster-NAM-YOLO的黄瓜霜霉病菌孢子定量检测模型,该模型首先提出了一种特征提取模块C3_Faster,使用C3_Faster替换YOLO v5中的C3模块,有效降低了模型参数计算量和模型深度,提升了对黄瓜霜霉病菌孢子检测速度和精度;其次在主干网络中加入了NAM注意力模块,通过应用权重稀疏性惩罚抑制不显著权重,进而提高模型的特征提取能力和计算效率;最后实现了对黄瓜霜霉病菌孢子的定量检测。实验结果表明,Faster-NAM-YOLO模型在测试集上mAP@0.5和mAP@0.5:0.95分别达到95.80%和60.90%,对比原始YOLO v5模型分别提升1.80、1.20个百分点,较原始YOLO v5模型内存占用量和每秒浮点运算次数分别减少5.27 MB和1.49×10^(10);通过与YOLO v3、THP-YOLO v5、YOLO v7、YOLO v8、Faster RCNN、SSD目标检测模型对比,Faster-NAM-YOLO在检测精度、模型内存占用量、每秒浮点运算次数和推理时间方面均具有显著优势;在1 200像素×1 200像素、1 500像素×1 500像素和1 800像素×1 800像素3种不同分辨率尺度及不同图像数量下进一步验证了Faster-NAM-YOLO模型具有较强的鲁棒性和泛化能力。 展开更多
关键词 黄瓜霜霉病 孢子 目标检测 YOLO v5 FasterNet NAM注意力
下载PDF
上一页 1 下一页 到第
使用帮助 返回顶部