This paper presents the catalytic effect of NaH doped nanocrystalline TiO_(2)(designated as NaTiOxH)in the improvement of MgH_(2)hydrogen storage properties.The catalyst preparation involves ball milling NaH with TiO_...This paper presents the catalytic effect of NaH doped nanocrystalline TiO_(2)(designated as NaTiOxH)in the improvement of MgH_(2)hydrogen storage properties.The catalyst preparation involves ball milling NaH with TiO_(2)for 3 hr.The addition of 5 wt%NaTiOxH powder into MgH_(2)reduces its operating temperature to∼185℃,which is∼110℃lower than the additive-free as-milled MgH_(2).The composite remarkably desorbs∼7.2 wt%H_(2)within 15 min at∼290℃and reabsorbs∼4.5 wt%H_(2)in 45 min at room temperature under 50 bar H_(2).MgH_(2)dehydrogenation is activated at 57 kJ/mol by the catalyst.More importantly,the addition of 2.5 wt%NaTiOxH catalyst aids MgH_(2)to reversibly produce∼6.1 wt%H_(2)upon 100 cycles within 475 hr at 300℃.Microstructural investigation into the catalyzed MgH_(2)composite reveals a firm contact existing between NaTiOxH and MgH_(2)particles.Meanwhile,the NaTiOxH catalyst consists of catalytically active Ti_(3)O_(5),and“rod-like”Na_(2)Ti_(3)O_(7)species liberated in-situ during preparation;these active species could provide multiple hydrogen diffusion pathways for an improved MgH_(2)sorption process.Furthermore,the elemental characterization identifies the reduced valence states of titanium(Ti<4+)which show some sort of reversibility consistent with H_(2)insertion and removal.This phenomenon is believed to enhance the mobility of Mg/MgH_(2)electrons by the creation and elimination of oxygen vacancies in the defective(TiO_(2-x))catalyst.Our findings have therefore moved MgH_(2)closer to practical applications.展开更多
The conventional nearfield acoustic holography(NAH) is usually based on the assumption of free-field conditions, and it also requires that the measurement aperture should be larger than the actual source. This paper i...The conventional nearfield acoustic holography(NAH) is usually based on the assumption of free-field conditions, and it also requires that the measurement aperture should be larger than the actual source. This paper is to focus on the problem that neither of the above-mentioned requirements can be met, and to examine the feasibility of reconstructing the sound field radiated by partial source, based on double-layer pressure measurements made in a non-free field by using patch NAH combined with sound field separation technique. And also, the sensitivity of the reconstructed result to the measurement error is analyzed in detail. Two experiments involving two speakers in an exterior space and one speaker inside a car cabin are presented. The experimental results demonstrate that the patch NAH based on single-layer pressure measurement cannot obtain a satisfied result due to the influences of disturbing sources and reflections, while the patch NAH based on double-layer pressure measurements can successfully remove these influences and reconstruct the patch sound field effectively.展开更多
基金The authors acknowledge the Project supported by the National Key R&D Program of China(2019YFE0103600,2018YFB1502101)the Key R&D Program of Shandong Province,China(2020CXGC010402)+4 种基金the National Natural Science Foundation of China(51801197)the Liaoning Revitalization Talents Program(XLYC2002076)the Dalian High-level Talents Program(2019RD09)the Youth Innovation Promotion Association CAS(2019189)K.C.Wong Education Foundation(GJTD-2018–06).
文摘This paper presents the catalytic effect of NaH doped nanocrystalline TiO_(2)(designated as NaTiOxH)in the improvement of MgH_(2)hydrogen storage properties.The catalyst preparation involves ball milling NaH with TiO_(2)for 3 hr.The addition of 5 wt%NaTiOxH powder into MgH_(2)reduces its operating temperature to∼185℃,which is∼110℃lower than the additive-free as-milled MgH_(2).The composite remarkably desorbs∼7.2 wt%H_(2)within 15 min at∼290℃and reabsorbs∼4.5 wt%H_(2)in 45 min at room temperature under 50 bar H_(2).MgH_(2)dehydrogenation is activated at 57 kJ/mol by the catalyst.More importantly,the addition of 2.5 wt%NaTiOxH catalyst aids MgH_(2)to reversibly produce∼6.1 wt%H_(2)upon 100 cycles within 475 hr at 300℃.Microstructural investigation into the catalyzed MgH_(2)composite reveals a firm contact existing between NaTiOxH and MgH_(2)particles.Meanwhile,the NaTiOxH catalyst consists of catalytically active Ti_(3)O_(5),and“rod-like”Na_(2)Ti_(3)O_(7)species liberated in-situ during preparation;these active species could provide multiple hydrogen diffusion pathways for an improved MgH_(2)sorption process.Furthermore,the elemental characterization identifies the reduced valence states of titanium(Ti<4+)which show some sort of reversibility consistent with H_(2)insertion and removal.This phenomenon is believed to enhance the mobility of Mg/MgH_(2)electrons by the creation and elimination of oxygen vacancies in the defective(TiO_(2-x))catalyst.Our findings have therefore moved MgH_(2)closer to practical applications.
基金supported by the National Natural Science Foundation of China(Grant Nos.11274087 and 51322505)the Research Fund for the Doctoral Program of Higher Education(Grant No.20100111110007)
文摘The conventional nearfield acoustic holography(NAH) is usually based on the assumption of free-field conditions, and it also requires that the measurement aperture should be larger than the actual source. This paper is to focus on the problem that neither of the above-mentioned requirements can be met, and to examine the feasibility of reconstructing the sound field radiated by partial source, based on double-layer pressure measurements made in a non-free field by using patch NAH combined with sound field separation technique. And also, the sensitivity of the reconstructed result to the measurement error is analyzed in detail. Two experiments involving two speakers in an exterior space and one speaker inside a car cabin are presented. The experimental results demonstrate that the patch NAH based on single-layer pressure measurement cannot obtain a satisfied result due to the influences of disturbing sources and reflections, while the patch NAH based on double-layer pressure measurements can successfully remove these influences and reconstruct the patch sound field effectively.