依托山东省东平县农业科学研究所自2010年设立的长期定位试验平台采取裂区试验设计(主区为磷肥,裂区钾肥,裂-裂区为氮肥,P_(2)O_(5)施入量为0、90、120和150 kg hm^(-2),分别用P_(0)、P_(1)、P_(2)和P_(3)表示;K_(2)O施入量为0、180、24...依托山东省东平县农业科学研究所自2010年设立的长期定位试验平台采取裂区试验设计(主区为磷肥,裂区钾肥,裂-裂区为氮肥,P_(2)O_(5)施入量为0、90、120和150 kg hm^(-2),分别用P_(0)、P_(1)、P_(2)和P_(3)表示;K_(2)O施入量为0、180、240和300 kg hm^(-2),分别用K0、K_(1)、K_(2)和K_(3)表示;纯氮施入量为0、180、240和300 kg hm^(-2),分别用N_(0)、N_(1)、N_(2)和N_(3)表示),于2020—2021年以登海605为试验材料,深入分析了养分施用量对夏玉米叶片干物质积累和氮浓度的影响,构建了夏玉米营养生长阶段叶片临界氮稀释曲线,探讨了不同养分投入量以氮营养指数模型诊断和评价夏玉米氮营养状况的可行性。结果表明:夏玉米花前叶片干物质积累量和氮浓度随氮、磷、钾素用量的增加呈上升趋势;叶片氮浓度随生育进程推进和叶片干物质积累呈下降趋势,表现出稀释现象。叶片干物质积累量和氮浓度变化可分为氮素限制和非氮素限制2组,据此分别构建了不同磷钾素用量下夏玉米叶片营养生长阶段临界氮浓度曲线模型:N_(LC0)=2.745 LDM^(–0.529),N_(LC1)=3.245 LDM^(–0.334),N_(LC2)=3.557 LDM^(–0.290),N_(LC3)=3.639 LDM^(–0.286)。相关分析表明基于临界氮浓度稀释曲线计算的氮营养指数与相对叶片干物质积累量、相对籽粒产量均呈极显著相关。结合相对叶片干物质积累量和相对籽粒产量与氮营养指数之间的线性加平台关系,可以很好地评价氮素限制和非氮素限制2种情况下的作物氮素营养状况。因此,利用夏玉米叶片营养生长阶段临界氮稀释曲线和氮营养指数可有效预测夏玉米营养生长阶段临界氮浓度,并表征夏玉米氮营养状况。展开更多
文摘依托山东省东平县农业科学研究所自2010年设立的长期定位试验平台采取裂区试验设计(主区为磷肥,裂区钾肥,裂-裂区为氮肥,P_(2)O_(5)施入量为0、90、120和150 kg hm^(-2),分别用P_(0)、P_(1)、P_(2)和P_(3)表示;K_(2)O施入量为0、180、240和300 kg hm^(-2),分别用K0、K_(1)、K_(2)和K_(3)表示;纯氮施入量为0、180、240和300 kg hm^(-2),分别用N_(0)、N_(1)、N_(2)和N_(3)表示),于2020—2021年以登海605为试验材料,深入分析了养分施用量对夏玉米叶片干物质积累和氮浓度的影响,构建了夏玉米营养生长阶段叶片临界氮稀释曲线,探讨了不同养分投入量以氮营养指数模型诊断和评价夏玉米氮营养状况的可行性。结果表明:夏玉米花前叶片干物质积累量和氮浓度随氮、磷、钾素用量的增加呈上升趋势;叶片氮浓度随生育进程推进和叶片干物质积累呈下降趋势,表现出稀释现象。叶片干物质积累量和氮浓度变化可分为氮素限制和非氮素限制2组,据此分别构建了不同磷钾素用量下夏玉米叶片营养生长阶段临界氮浓度曲线模型:N_(LC0)=2.745 LDM^(–0.529),N_(LC1)=3.245 LDM^(–0.334),N_(LC2)=3.557 LDM^(–0.290),N_(LC3)=3.639 LDM^(–0.286)。相关分析表明基于临界氮浓度稀释曲线计算的氮营养指数与相对叶片干物质积累量、相对籽粒产量均呈极显著相关。结合相对叶片干物质积累量和相对籽粒产量与氮营养指数之间的线性加平台关系,可以很好地评价氮素限制和非氮素限制2种情况下的作物氮素营养状况。因此,利用夏玉米叶片营养生长阶段临界氮稀释曲线和氮营养指数可有效预测夏玉米营养生长阶段临界氮浓度,并表征夏玉米氮营养状况。