The rapid growth of social networks has produced an unprecedented amount of user-generated data, which provides an excellent opportunity for text mining. Authorship analysis, an important part of text mining, attempts...The rapid growth of social networks has produced an unprecedented amount of user-generated data, which provides an excellent opportunity for text mining. Authorship analysis, an important part of text mining, attempts to learn about the author of the text through subtle variations in the writing styles that occur between gender, age and social groups. Such information has a variety of applications including advertising and law enforcement. One of the most accessible sources of user-generated data is Twitter, which makes the majority of its user data freely available through its data access API. In this study we seek to identify the gender of users on Twitter using Perceptron and Nai ve Bayes with selected 1 through 5-gram features from tweet text. Stream applications of these algorithms were employed for gender prediction to handle the speed and volume of tweet traffic. Because informal text, such as tweets, cannot be easily evaluated using traditional dictionary methods, n-gram features were implemented in this study to represent streaming tweets. The large number of 1 through 5-grams requires that only a subset of them be used in gender classification, for this reason informative n-gram features were chosen using multiple selection algorithms. In the best case the Naive Bayes and Perceptron algorithms produced accuracy, balanced accuracy, and F-measure above 99%.展开更多
The explosive growth ofmalware variants poses a major threat to information security. Traditional anti-virus systems based on signatures fail to classify unknown malware into their corresponding families and to detect...The explosive growth ofmalware variants poses a major threat to information security. Traditional anti-virus systems based on signatures fail to classify unknown malware into their corresponding families and to detect new kinds of malware pro- grams. Therefore, we propose a machine learning based malware analysis system, which is composed of three modules: data processing, decision making, and new malware detection. The data processing module deals with gray-scale images, Opcode n-gram, and import fimctions, which are employed to extract the features of the malware. The decision-making module uses the features to classify the malware and to identify suspicious malware. Finally, the detection module uses the shared nearest neighbor (SNN) clustering algorithm to discover new malware families. Our approach is evaluated on more than 20 000 malware instances, which were collected by Kingsoft, ESET NOD32, and Anubis. The results show that our system can effectively classify the un- known malware with a best accuracy of 98.9%, and successfully detects 86.7% of the new malware.展开更多
文摘The rapid growth of social networks has produced an unprecedented amount of user-generated data, which provides an excellent opportunity for text mining. Authorship analysis, an important part of text mining, attempts to learn about the author of the text through subtle variations in the writing styles that occur between gender, age and social groups. Such information has a variety of applications including advertising and law enforcement. One of the most accessible sources of user-generated data is Twitter, which makes the majority of its user data freely available through its data access API. In this study we seek to identify the gender of users on Twitter using Perceptron and Nai ve Bayes with selected 1 through 5-gram features from tweet text. Stream applications of these algorithms were employed for gender prediction to handle the speed and volume of tweet traffic. Because informal text, such as tweets, cannot be easily evaluated using traditional dictionary methods, n-gram features were implemented in this study to represent streaming tweets. The large number of 1 through 5-grams requires that only a subset of them be used in gender classification, for this reason informative n-gram features were chosen using multiple selection algorithms. In the best case the Naive Bayes and Perceptron algorithms produced accuracy, balanced accuracy, and F-measure above 99%.
基金Project supported by the Natiooal Natural Science Foundation of China (No. 61303264) and the National Basic Research Program (973) of China (Nos. 2012CB315906 and 0800065111001)
文摘The explosive growth ofmalware variants poses a major threat to information security. Traditional anti-virus systems based on signatures fail to classify unknown malware into their corresponding families and to detect new kinds of malware pro- grams. Therefore, we propose a machine learning based malware analysis system, which is composed of three modules: data processing, decision making, and new malware detection. The data processing module deals with gray-scale images, Opcode n-gram, and import fimctions, which are employed to extract the features of the malware. The decision-making module uses the features to classify the malware and to identify suspicious malware. Finally, the detection module uses the shared nearest neighbor (SNN) clustering algorithm to discover new malware families. Our approach is evaluated on more than 20 000 malware instances, which were collected by Kingsoft, ESET NOD32, and Anubis. The results show that our system can effectively classify the un- known malware with a best accuracy of 98.9%, and successfully detects 86.7% of the new malware.