Measurements of greenhouse gases CO2, CH4, and N2O were made by static chamber-gas chromatograph in Inner Mongolia. Results indicate that with growing seasons, the daily variation patterns of emission/uptake of greenh...Measurements of greenhouse gases CO2, CH4, and N2O were made by static chamber-gas chromatograph in Inner Mongolia. Results indicate that with growing seasons, the daily variation patterns of emission/uptake of greenhouse gases differ greatly in the prairie ecosystem. The peak of seasonal emission/uptake of three greenhouse gases occurs at the melting period in spring when soil moisture is high and rainfall is rich. The daily emissions of CO2 from steppe vegetation in growing seasons are low during the daytime and high at night. Higher temperatures are advantageous to emission of CO2, as aboveground biomass determines the amount of CO2 photosynthetic uptake. The key factors that influence the daily variation patterns of CH4 uptake and N2O emission in semiarid grassland are soil moisture and the oxygen supplying condition, while the changes in daily temperature mainly affect the range of daily variations. The seasonal changes of N2O emission are positively related to seasonal change in soil moisture. Free grazing reduces the daily mean deviation of exchange rates of CO2, N2O, and CH4, but it decreases the amount of annual emission/uptake of N2O and CH4 yet it increases the annual emission of CO2.展开更多
A field experiment was conducted on Chinese cabbage (Brassica campestris L. ssp. pekinensis (Lour.) Olsson) in a Nanjing suburb in 2003. The experiment included 4 treatments in a randomized complete block design w...A field experiment was conducted on Chinese cabbage (Brassica campestris L. ssp. pekinensis (Lour.) Olsson) in a Nanjing suburb in 2003. The experiment included 4 treatments in a randomized complete block design with 3 replicates: zero chemical fertilizer N (CK); urea at rates of 300 kg N ha^-1 (U300) and 600 kg N ha^-1 (U600), both as basal and two topdressings; and polymer-coated urea at a rate of 180 kg N ha^-1 (PCU180) as a basal application. The acetylene inhibition technique was used to measure denitrification (N2 + N2O) from intact soil cores and N2O emissions in the absence of acetylene. Results showed that compared to (3K total denitrification losses were significantly greater (P ≤ 0.05) in the PCU180, U300, and U600 treatments,while N2O emissions in the U300 and U600 treatments were significantly higher (P ≤ 0.05) than (3K. In the U300 and U600 treatments peaks of denitrification and N2O emission were usually observed after N application. In the polymer-coated urea treatment (PCU180) during the period 20 to 40 days after transplanting, higher denitrification rates and N2O fluxes occurred. Compared with urea, polymer-coated urea did not show any effect on reducing denitrification losses and N2O emissions in terms of percentage of applied N. As temperature gradually decreased from transplanting to harvest, denitrification rates and N2O emissions tended to decrease. A significant (P ≤0.01) positive correlation occurred between denitrification (r = 0.872) or N2O emission (r = 0.781) flux densities and soil temperature in the CK treatment with a stable nitrate content during the whole growing season.展开更多
Methane (CH4) and nitrous oxide (N2O) saturation concentration and gas-water interface emission flux in surface water of the Yangtze Delta plain river net were investigated in summer at representative sites including ...Methane (CH4) and nitrous oxide (N2O) saturation concentration and gas-water interface emission flux in surface water of the Yangtze Delta plain river net were investigated in summer at representative sites including the upper reaches of the Huangpu River and the rivers in the Chongming Island. The results show that the CH4 concentration in river water ranged from 0.30±0.03 to 6.66±0.14 μmol.L-1, and N2O concentration ranged from 13.8±2.33 to 435±116 nmol.L-1. River surface water had a very high satura- tion level of CH4 (from 468±49.0% to 11560±235%) and that of N2O (from 175±29.5% to 4914±1304%). Dissolved oxygen (DO) was the primary factor controlling the CH4 concentration in water. N2O concentration had significant negative correlation with salinity and a significant positive correlation with nitrate (NO3-), nitrite (NO2-), chemical oxygen demand (CODcr) concentration and pH of river water. CH4 and N2O of river water were brought about mainly by methanogenesis and denitrification in river bottom sediment that diffused through sediment-water interface into the water body and then into atmosphere through the gas-water interface. The emission flux of CH4 and N2O at river gas-water interface reached 778±59.8 and 236±63.6 μmol.m-2.h-1, respectively in summer. The river net was a potential source of atmospheric CH4 and N2O because of eutrophication of the water body.展开更多
基金This work was supported bythe grant of the Knowledge Innovation Program of Chi-nese Academy of Sciences(approved # KZCX1SW-01).The authors would like to thank Dr.DU Rui, Wang Yan-fen,and Professor Zhang Wen,Wang Gengchen,and WangMingxing for t
文摘Measurements of greenhouse gases CO2, CH4, and N2O were made by static chamber-gas chromatograph in Inner Mongolia. Results indicate that with growing seasons, the daily variation patterns of emission/uptake of greenhouse gases differ greatly in the prairie ecosystem. The peak of seasonal emission/uptake of three greenhouse gases occurs at the melting period in spring when soil moisture is high and rainfall is rich. The daily emissions of CO2 from steppe vegetation in growing seasons are low during the daytime and high at night. Higher temperatures are advantageous to emission of CO2, as aboveground biomass determines the amount of CO2 photosynthetic uptake. The key factors that influence the daily variation patterns of CH4 uptake and N2O emission in semiarid grassland are soil moisture and the oxygen supplying condition, while the changes in daily temperature mainly affect the range of daily variations. The seasonal changes of N2O emission are positively related to seasonal change in soil moisture. Free grazing reduces the daily mean deviation of exchange rates of CO2, N2O, and CH4, but it decreases the amount of annual emission/uptake of N2O and CH4 yet it increases the annual emission of CO2.
基金Project supported by the National Natural Science Foundation of China (No. 40171048)the Science and Technique Key Project of the Tenth Five-Year Plan of China (No. 2002BA516A03)
文摘A field experiment was conducted on Chinese cabbage (Brassica campestris L. ssp. pekinensis (Lour.) Olsson) in a Nanjing suburb in 2003. The experiment included 4 treatments in a randomized complete block design with 3 replicates: zero chemical fertilizer N (CK); urea at rates of 300 kg N ha^-1 (U300) and 600 kg N ha^-1 (U600), both as basal and two topdressings; and polymer-coated urea at a rate of 180 kg N ha^-1 (PCU180) as a basal application. The acetylene inhibition technique was used to measure denitrification (N2 + N2O) from intact soil cores and N2O emissions in the absence of acetylene. Results showed that compared to (3K total denitrification losses were significantly greater (P ≤ 0.05) in the PCU180, U300, and U600 treatments,while N2O emissions in the U300 and U600 treatments were significantly higher (P ≤ 0.05) than (3K. In the U300 and U600 treatments peaks of denitrification and N2O emission were usually observed after N application. In the polymer-coated urea treatment (PCU180) during the period 20 to 40 days after transplanting, higher denitrification rates and N2O fluxes occurred. Compared with urea, polymer-coated urea did not show any effect on reducing denitrification losses and N2O emissions in terms of percentage of applied N. As temperature gradually decreased from transplanting to harvest, denitrification rates and N2O emissions tended to decrease. A significant (P ≤0.01) positive correlation occurred between denitrification (r = 0.872) or N2O emission (r = 0.781) flux densities and soil temperature in the CK treatment with a stable nitrate content during the whole growing season.
基金Supported by the National Natural Science Foundation of China (Grant No. 40730526)the Science & Technology Department of Shanghai (Grant No. 07DZ12037)+1 种基金the National Great Water Issue Project of China (Grant No. 2008ZX07317-006)China Postdoctoral Science Foundation (Grant No. 20060400635)
文摘Methane (CH4) and nitrous oxide (N2O) saturation concentration and gas-water interface emission flux in surface water of the Yangtze Delta plain river net were investigated in summer at representative sites including the upper reaches of the Huangpu River and the rivers in the Chongming Island. The results show that the CH4 concentration in river water ranged from 0.30±0.03 to 6.66±0.14 μmol.L-1, and N2O concentration ranged from 13.8±2.33 to 435±116 nmol.L-1. River surface water had a very high satura- tion level of CH4 (from 468±49.0% to 11560±235%) and that of N2O (from 175±29.5% to 4914±1304%). Dissolved oxygen (DO) was the primary factor controlling the CH4 concentration in water. N2O concentration had significant negative correlation with salinity and a significant positive correlation with nitrate (NO3-), nitrite (NO2-), chemical oxygen demand (CODcr) concentration and pH of river water. CH4 and N2O of river water were brought about mainly by methanogenesis and denitrification in river bottom sediment that diffused through sediment-water interface into the water body and then into atmosphere through the gas-water interface. The emission flux of CH4 and N2O at river gas-water interface reached 778±59.8 and 236±63.6 μmol.m-2.h-1, respectively in summer. The river net was a potential source of atmospheric CH4 and N2O because of eutrophication of the water body.