Pore size and distribution in carbon-based materials are regarded to be a key factor to affect the electrochemical capacitive performances of the resultant electrodes.In this study,nitrogen and oxygen codoped porous c...Pore size and distribution in carbon-based materials are regarded to be a key factor to affect the electrochemical capacitive performances of the resultant electrodes.In this study,nitrogen and oxygen codoped porous carbons(NOPCs) are fabricated based on a simple Schiff-base reaction between m-phenylenediamine and terephthalaldehyde.The NOPCs have tunable morphologies,high surface areas,abundant heteroatom doping.More importantly,the carbons show a dominant micropores of 0.5-0.8 nm,comparable to the ionic sizes of LiTFSI(Li^+0.069 nm;TFSI-0.79 nm) water-in-salt electrolyte with a high potential window of 2.2 V.Consequently,the fabricated symmetric supercapacitor gives a high energy output of 30.5 Wh/kg at 1 kW/kg,and high stability after successive 10,000 cycles with ^96.8% retention.This study provides promising potential to develop high-energy supercapacitors.展开更多
A novel metal-free bulk nanocatalyst, S--N-codoped hollow carbon nanosphere/ graphene aerogel (SNC-GA-1000), has been successfully fabricated using a facile and clean solid ion transition route. In this method, ZnS ...A novel metal-free bulk nanocatalyst, S--N-codoped hollow carbon nanosphere/ graphene aerogel (SNC-GA-1000), has been successfully fabricated using a facile and clean solid ion transition route. In this method, ZnS is used as the hard template and S source, while polydopamine acts as a reducing agent and carbon source. At a high annealing temperature, Zn metal is reduced and evaporates, leaving only free S vapor to diffuse into the carbon layer. Interestingly, the as-obtained SNC-GA-1000 exhibits much higher catalytic activity in an organic reduction reaction than unloaded bare S--N-codoped carbon nanospheres. Hydrothermal reduction of the graphene oxide sheets loaded with ZnSC@olydopamine core-shell nanospheres (ZnS@PDA) affords a three-dimensional bulk graphene aerogel. Although nanosized catalysts exhibit high catalytic activities, their subsequent separation is not always satisfactory, making post-treatment difficult. This approach achieves a trade-off between activity and separability. More importantly, due to the 3D structural nature, such bulk and handheld nanocatalysts can be easily separated and recycled.展开更多
Recently,Cu-based single-atom catalysts(SACs)have garnered increasing attention as substitutes for platinum-based catalysts in the oxygen reduction reaction(ORR).Therefore,a facile,economical,and efficient synthetic m...Recently,Cu-based single-atom catalysts(SACs)have garnered increasing attention as substitutes for platinum-based catalysts in the oxygen reduction reaction(ORR).Therefore,a facile,economical,and efficient synthetic methodology for the preparation of a high-performance Cu-based SAC electrocatalyst for the ORR is extremely desired,but is also significantly challenging.In this study,we propose a ball-milling method to synthesize isolated metal SACs embedded in S,N-codoped nanocarbon(MNSDC,M=Cu,Fe,Co,Ni,Mn,Pt,and Pd).In particular,the Cu-NSDC SACs exhibit high electrochemical activity for the ORR with half-wave potential(E_(1/2))of 0.84 V(vs.reversible hydrogen electrode(RHE),20 mV higher than Pt/C)in alkaline electrolyte,excellent stability,and electrocatalytic selectivity.Density functional theory(DFT)calculations demonstrated that the desorption of OH*intermediates was the rate-determining step over Cu-NSDC.This study creates a pathway for high-performance ORR single atomic electrocatalysts for fuel cell applications and provides opportunities to convert biowaste materials into commercial opportunities.展开更多
C,N-codoped TiO 2 films have been deposited onto stainless steel substrates using plasma surface alloying and thermal oxidation duplex process.Composition analysis shows that the films shield the substrates entirely.T...C,N-codoped TiO 2 films have been deposited onto stainless steel substrates using plasma surface alloying and thermal oxidation duplex process.Composition analysis shows that the films shield the substrates entirely.The TiO 2 films are anatase in structure as characterized by X-ray diffraction.The electrochemical measurements show that the equilibrium corrosion potential positively shifts from-0.275 eV for bare stainless steel to-0.267 eV for C,N-codoped TiO 2 coated stainless steel,and the corrosion current density decreases from 1.3×10-5 A/cm2 to 4.1×10-6 A/cm2.The corrosion resistance obtained by electrochemistry noise also reveals that the C,N-codoped TiO 2 films provide good protection for stainless steel against corrosion in stimulated body fluid.The above results indicate that C,N-codoped TiO 2 films deposited by plasma surface alloying and thermal oxidation duplex process are effective in protecting stainless steel from corrosion.展开更多
Photocatalytic splitting of hydrogen sulfide(H2S) for hydrogen evolution is a promising method to solve the energy and environmental issues.In this work,S,N-codoped carbon dots(S,N-CDs)/graphitic carbon nitride(g-C3N4...Photocatalytic splitting of hydrogen sulfide(H2S) for hydrogen evolution is a promising method to solve the energy and environmental issues.In this work,S,N-codoped carbon dots(S,N-CDs)/graphitic carbon nitride(g-C3N4) nanosheet is synthesized by hydrothermal method as an efficient photocatalyst for the decomposition of H2S.In addition to the characterization of the morphology and structure,chemical state,optical and electrochemical performances of S,N-CDs/g-C3N4,hydrogen evolution tests show that the activity of g-C3N4 is improved by introducing S,N-CDs,and the enhancement depends strongly on the wavelength of incident light.The photocatalytic hydrogen production rate of S,N-CDs/g-C3N4 composite reaches 832 μmol g-1h-1, which is 38 times to that of g-C3N4 under irradiation at 460 nm.Density functional theory calculations and electron paramagnetic resonance as well as photoluminescence technologies have altogether authenticated that the unique wavelength-dependent photosensitization of S,N-CDs on g-C3N4;meanwhile,a good match between the energy level of S,N-CDs and g-C3N4 is pivotal for the effective photocatalytic activity.Our work has unveiled the detailed mechanism of the photocatalytic activity enhancement in S,N-CDs/g-C3N4 composite and showed its potential in photocatalytic splitting of H2S for hydrogen evolution.展开更多
基金financially supported by the National Natural Science Foundation of China(Nos.21875165,51772216 and 21703161)the Science and Technology Commission of Shanghai Municipality,China(No.14DZ2261100)the Fundamental Research Funds for the Central Universities。
文摘Pore size and distribution in carbon-based materials are regarded to be a key factor to affect the electrochemical capacitive performances of the resultant electrodes.In this study,nitrogen and oxygen codoped porous carbons(NOPCs) are fabricated based on a simple Schiff-base reaction between m-phenylenediamine and terephthalaldehyde.The NOPCs have tunable morphologies,high surface areas,abundant heteroatom doping.More importantly,the carbons show a dominant micropores of 0.5-0.8 nm,comparable to the ionic sizes of LiTFSI(Li^+0.069 nm;TFSI-0.79 nm) water-in-salt electrolyte with a high potential window of 2.2 V.Consequently,the fabricated symmetric supercapacitor gives a high energy output of 30.5 Wh/kg at 1 kW/kg,and high stability after successive 10,000 cycles with ^96.8% retention.This study provides promising potential to develop high-energy supercapacitors.
基金Acknowledgements The authors are grateful for the financial aid from the National Natural Science Foundation of China (Nos. 51372242, 21590794, 21210001, and 21521092), Hong Kong, Macao and Taiwan Science and Technology Cooperation Special Project of Ministry of Science and Technology of China (No. 2014DFT10310), the National Key Basic Research Program of China (No. 2014CB643802), Youth Innovation Promotion Association of Chinese Academy of Sciences (No. 2011176), CAS- CSIRO project (No. GJHZ1730) and the Program of Science and Technology Development Plan of Jilin Province of China (No. 20140201007GX).
文摘A novel metal-free bulk nanocatalyst, S--N-codoped hollow carbon nanosphere/ graphene aerogel (SNC-GA-1000), has been successfully fabricated using a facile and clean solid ion transition route. In this method, ZnS is used as the hard template and S source, while polydopamine acts as a reducing agent and carbon source. At a high annealing temperature, Zn metal is reduced and evaporates, leaving only free S vapor to diffuse into the carbon layer. Interestingly, the as-obtained SNC-GA-1000 exhibits much higher catalytic activity in an organic reduction reaction than unloaded bare S--N-codoped carbon nanospheres. Hydrothermal reduction of the graphene oxide sheets loaded with ZnSC@olydopamine core-shell nanospheres (ZnS@PDA) affords a three-dimensional bulk graphene aerogel. Although nanosized catalysts exhibit high catalytic activities, their subsequent separation is not always satisfactory, making post-treatment difficult. This approach achieves a trade-off between activity and separability. More importantly, due to the 3D structural nature, such bulk and handheld nanocatalysts can be easily separated and recycled.
基金supported by the National Key Research and Development Program Nanotechnology Specific Project(No.2020YFA0210900)the National Natural Science Foundation of China(Nos.21908255,22078371,22108315,21938001,and 21961160741)+3 种基金the Guangdong Provincial Key R&D Programme(No.2019B110206002)the Science and Technology Key Project of Guangdong Province(No.2020B010188002)the Guangdong Basic and Applied Basic Research Foundation(No.2020A1515110864)the Guangdong Natural Science Foundation(No.2021A1515010163).
文摘Recently,Cu-based single-atom catalysts(SACs)have garnered increasing attention as substitutes for platinum-based catalysts in the oxygen reduction reaction(ORR).Therefore,a facile,economical,and efficient synthetic methodology for the preparation of a high-performance Cu-based SAC electrocatalyst for the ORR is extremely desired,but is also significantly challenging.In this study,we propose a ball-milling method to synthesize isolated metal SACs embedded in S,N-codoped nanocarbon(MNSDC,M=Cu,Fe,Co,Ni,Mn,Pt,and Pd).In particular,the Cu-NSDC SACs exhibit high electrochemical activity for the ORR with half-wave potential(E_(1/2))of 0.84 V(vs.reversible hydrogen electrode(RHE),20 mV higher than Pt/C)in alkaline electrolyte,excellent stability,and electrocatalytic selectivity.Density functional theory(DFT)calculations demonstrated that the desorption of OH*intermediates was the rate-determining step over Cu-NSDC.This study creates a pathway for high-performance ORR single atomic electrocatalysts for fuel cell applications and provides opportunities to convert biowaste materials into commercial opportunities.
基金Funded by the National Natural Science Foundation of China (No.50771070)Project Innovation of the Graduate Students of Shanxi Province(No.20093038)
文摘C,N-codoped TiO 2 films have been deposited onto stainless steel substrates using plasma surface alloying and thermal oxidation duplex process.Composition analysis shows that the films shield the substrates entirely.The TiO 2 films are anatase in structure as characterized by X-ray diffraction.The electrochemical measurements show that the equilibrium corrosion potential positively shifts from-0.275 eV for bare stainless steel to-0.267 eV for C,N-codoped TiO 2 coated stainless steel,and the corrosion current density decreases from 1.3×10-5 A/cm2 to 4.1×10-6 A/cm2.The corrosion resistance obtained by electrochemistry noise also reveals that the C,N-codoped TiO 2 films provide good protection for stainless steel against corrosion in stimulated body fluid.The above results indicate that C,N-codoped TiO 2 films deposited by plasma surface alloying and thermal oxidation duplex process are effective in protecting stainless steel from corrosion.
基金financial support from the National Natural Science Foundation of China (U1862111 and 21702213)Cheung Kong Scholars Programme of China+3 种基金Chinese Academic of Science “light of west China” ProgramProvincial International Cooperation Project 2020YFH0118, Sichuan, ChinaOpen Fund (PLN201802 and 201928) of State Key Laboratory of Oil and Gas Reservoir Geology and Exploitation (Southwest Petroleum University)Open Fund of State Key Laboratory of Industrial Vent Gas Reuse (SKLIVGR-SWPU-2020-05)。
文摘Photocatalytic splitting of hydrogen sulfide(H2S) for hydrogen evolution is a promising method to solve the energy and environmental issues.In this work,S,N-codoped carbon dots(S,N-CDs)/graphitic carbon nitride(g-C3N4) nanosheet is synthesized by hydrothermal method as an efficient photocatalyst for the decomposition of H2S.In addition to the characterization of the morphology and structure,chemical state,optical and electrochemical performances of S,N-CDs/g-C3N4,hydrogen evolution tests show that the activity of g-C3N4 is improved by introducing S,N-CDs,and the enhancement depends strongly on the wavelength of incident light.The photocatalytic hydrogen production rate of S,N-CDs/g-C3N4 composite reaches 832 μmol g-1h-1, which is 38 times to that of g-C3N4 under irradiation at 460 nm.Density functional theory calculations and electron paramagnetic resonance as well as photoluminescence technologies have altogether authenticated that the unique wavelength-dependent photosensitization of S,N-CDs on g-C3N4;meanwhile,a good match between the energy level of S,N-CDs and g-C3N4 is pivotal for the effective photocatalytic activity.Our work has unveiled the detailed mechanism of the photocatalytic activity enhancement in S,N-CDs/g-C3N4 composite and showed its potential in photocatalytic splitting of H2S for hydrogen evolution.