为指导甲氨基阿维菌素苯甲酸盐(下称甲维盐)在粘虫Mythimna separate Walker防治上的合理使用,测定了粘虫抗甲维盐种群对5种常用杀虫剂的交互抗性及其生化抗性机制。结果表明:粘虫抗甲维盐种群对阿维菌素(抗性倍数RR_(50)=21.80)、毒死...为指导甲氨基阿维菌素苯甲酸盐(下称甲维盐)在粘虫Mythimna separate Walker防治上的合理使用,测定了粘虫抗甲维盐种群对5种常用杀虫剂的交互抗性及其生化抗性机制。结果表明:粘虫抗甲维盐种群对阿维菌素(抗性倍数RR_(50)=21.80)、毒死蜱(RR_(50)=17.68)和灭多威(RR_(50)=10.85)均具有中等水平的交互抗性,与辛硫磷(RR_(50)=6.00)和氟氯氰菊酯(RR_(50)=5.65)之间交互抗性水平较低。酶抑制剂胡椒基丁醚(PBO)、马来酸二乙酯(DEM)、三丁基三硫磷酸酯(DEF)和磷酸三苯酯(TPP)在粘虫敏感种群和抗性种群生物测定中对甲维盐毒力均有显著的增效作用。粘虫抗甲维盐种群细胞色素P450和b_5含量及O-脱甲基酶、谷胱甘肽S-转移酶和羧酸酯酶活性均显著高于敏感种群,分别为敏感种群的3.23、3.65、3.63、1.64和2.66倍。研究表明,体内解毒代谢酶活性提高可能是粘虫对甲维盐产生抗性的重要原因。展开更多
To study insecticidal mechanism of terpinen-4-ol, a main insecticidal composition in the essential oil of Sabina vulgaris, the 5th instar larvae of Mythimna separta, were investigated with terpinen-4-ol by topical app...To study insecticidal mechanism of terpinen-4-ol, a main insecticidal composition in the essential oil of Sabina vulgaris, the 5th instar larvae of Mythimna separta, were investigated with terpinen-4-ol by topical application. The activities of phosphatase, glutathione S-transferase (GSTs), cytochrome P450 (P450), and polyphenol oxidase (PPO) of tested insects were determined in all poisoning stages, including exciting stage, convulsing stage, paralysis stage, and recover stage. The result showed that the activities of both acid phosphatase (ACP) and alkaline phosphatase (AKP) in treated insects were induced by terpinen-4-ol, but ACP was inhibited in paralysis stage. The activities of GSTs were inhibited in exciting stage, convulsing stage, and paralysis stage, but gradually recovered in recover stage. O-demethylase activity of cytochrome P450 was inhibited by terpinen-4-ol, and the inhibition rate in all poisoning stages were 26.27, 46.03, 80.24, and 90.22%, respectively. PPO activities were strongly inhibited by terpinen-4-ol both in vitro and in vivo. In conclusion, the activities of P450, GSTs, and PPO could have relation with toxicity of terpinen-4-ol against larvae of the Mythimna separta, but recover stage of the poisoning insects might be related to GSTs induced. As a new insecticide or synergist, terpinen- 4-ol has a potential value in field of insecticide resistance management.展开更多
文摘为指导甲氨基阿维菌素苯甲酸盐(下称甲维盐)在粘虫Mythimna separate Walker防治上的合理使用,测定了粘虫抗甲维盐种群对5种常用杀虫剂的交互抗性及其生化抗性机制。结果表明:粘虫抗甲维盐种群对阿维菌素(抗性倍数RR_(50)=21.80)、毒死蜱(RR_(50)=17.68)和灭多威(RR_(50)=10.85)均具有中等水平的交互抗性,与辛硫磷(RR_(50)=6.00)和氟氯氰菊酯(RR_(50)=5.65)之间交互抗性水平较低。酶抑制剂胡椒基丁醚(PBO)、马来酸二乙酯(DEM)、三丁基三硫磷酸酯(DEF)和磷酸三苯酯(TPP)在粘虫敏感种群和抗性种群生物测定中对甲维盐毒力均有显著的增效作用。粘虫抗甲维盐种群细胞色素P450和b_5含量及O-脱甲基酶、谷胱甘肽S-转移酶和羧酸酯酶活性均显著高于敏感种群,分别为敏感种群的3.23、3.65、3.63、1.64和2.66倍。研究表明,体内解毒代谢酶活性提高可能是粘虫对甲维盐产生抗性的重要原因。
基金supported by the National Natural Science Foundation of China(30600404)the Key Technologies R&D Program of China during the 10th Five-Year Plan Period(2004BA516A04).
文摘To study insecticidal mechanism of terpinen-4-ol, a main insecticidal composition in the essential oil of Sabina vulgaris, the 5th instar larvae of Mythimna separta, were investigated with terpinen-4-ol by topical application. The activities of phosphatase, glutathione S-transferase (GSTs), cytochrome P450 (P450), and polyphenol oxidase (PPO) of tested insects were determined in all poisoning stages, including exciting stage, convulsing stage, paralysis stage, and recover stage. The result showed that the activities of both acid phosphatase (ACP) and alkaline phosphatase (AKP) in treated insects were induced by terpinen-4-ol, but ACP was inhibited in paralysis stage. The activities of GSTs were inhibited in exciting stage, convulsing stage, and paralysis stage, but gradually recovered in recover stage. O-demethylase activity of cytochrome P450 was inhibited by terpinen-4-ol, and the inhibition rate in all poisoning stages were 26.27, 46.03, 80.24, and 90.22%, respectively. PPO activities were strongly inhibited by terpinen-4-ol both in vitro and in vivo. In conclusion, the activities of P450, GSTs, and PPO could have relation with toxicity of terpinen-4-ol against larvae of the Mythimna separta, but recover stage of the poisoning insects might be related to GSTs induced. As a new insecticide or synergist, terpinen- 4-ol has a potential value in field of insecticide resistance management.