A highly sensitive electrochemiluminescence-polymerase chain reaction (ECL-PCR) method for K-ras point mutation detection is developed. Briefly, K-ras oncogene was amplified by a Ru(bpy)3(2+) (TBR)-labeled forward and...A highly sensitive electrochemiluminescence-polymerase chain reaction (ECL-PCR) method for K-ras point mutation detection is developed. Briefly, K-ras oncogene was amplified by a Ru(bpy)3(2+) (TBR)-labeled forward and a biotin-labeled reverse primer, and followed by digestion with MvaI restriction enzyme, which only cut the wild-type amplicon containing its cutting site. The digested product was then adsorbed to the streptavidin-coated microbead through the biotin label and detected by ECL assay. The experiment results showed that the different genotypes can be clearly discriminated by ECL-PCR method. It is useful in point mutation detection, due to its sensitivity, safety, and simplicity.展开更多
针对在大规模时序医疗数据的分析中现有检测方法检测精度低、检测速度慢等问题,文中提出了一种基于深度学习的时序病变数据段分类方法。该方法在TSTKS(Ternary Search Trees and modified Kolmogorov-Smirnov)算法和滑动窗口理论的基础...针对在大规模时序医疗数据的分析中现有检测方法检测精度低、检测速度慢等问题,文中提出了一种基于深度学习的时序病变数据段分类方法。该方法在TSTKS(Ternary Search Trees and modified Kolmogorov-Smirnov)算法和滑动窗口理论的基础上,利用深度学习技术实现了对病变数据段的快速准确分类。文中以利用该方法对病变数据段进行分类的结果作为依据,实现了滑动窗口大小的动态调整。通过对真实癫痫脑电信号(Electroencephalogram,EEG)进行分析,证明了所提病变数据段分类方法和基于该分类方法的滑动窗口动态调整机制具有检测速度快、精度较高等优点,可以为大规模时序数据的快速分析研究提供一种新选择。展开更多
文摘A highly sensitive electrochemiluminescence-polymerase chain reaction (ECL-PCR) method for K-ras point mutation detection is developed. Briefly, K-ras oncogene was amplified by a Ru(bpy)3(2+) (TBR)-labeled forward and a biotin-labeled reverse primer, and followed by digestion with MvaI restriction enzyme, which only cut the wild-type amplicon containing its cutting site. The digested product was then adsorbed to the streptavidin-coated microbead through the biotin label and detected by ECL assay. The experiment results showed that the different genotypes can be clearly discriminated by ECL-PCR method. It is useful in point mutation detection, due to its sensitivity, safety, and simplicity.
文摘针对在大规模时序医疗数据的分析中现有检测方法检测精度低、检测速度慢等问题,文中提出了一种基于深度学习的时序病变数据段分类方法。该方法在TSTKS(Ternary Search Trees and modified Kolmogorov-Smirnov)算法和滑动窗口理论的基础上,利用深度学习技术实现了对病变数据段的快速准确分类。文中以利用该方法对病变数据段进行分类的结果作为依据,实现了滑动窗口大小的动态调整。通过对真实癫痫脑电信号(Electroencephalogram,EEG)进行分析,证明了所提病变数据段分类方法和基于该分类方法的滑动窗口动态调整机制具有检测速度快、精度较高等优点,可以为大规模时序数据的快速分析研究提供一种新选择。