The olfactory circuit of the fruit fly Drosophila melanogaster has emerged in recent years as an excellent paradigm for studying the principles and mechanisms of information processing in neuronal circuits. We discuss...The olfactory circuit of the fruit fly Drosophila melanogaster has emerged in recent years as an excellent paradigm for studying the principles and mechanisms of information processing in neuronal circuits. We discuss here the organizational principles of the olfactory circuit that make it an attractive model for experimental manipulations, the lessons that have been learned, and future challenges.展开更多
Mutations in long-chain acyl-CoA synthetase 4 (ACSL4) are associated with non-syndromic X-linked intellectual disability (ID). However, the neural functions of ACSL4 and how loss of ACSL4 leads to ID remain largely un...Mutations in long-chain acyl-CoA synthetase 4 (ACSL4) are associated with non-syndromic X-linked intellectual disability (ID). However, the neural functions of ACSL4 and how loss of ACSL4 leads to ID remain largely unexplored. We report here that mutations in Acsl, the Drosophila ortholog of human ACSL3 and ACSL4, result in developmental defects of the mushroom body (MB), the center of olfactory learning and memory. Specifically, Acsl mutants show fewer MB neuroblasts (Nbs) due to reduced proliferation activity and premature differentiation. Consistently, these surviving Nbs show reduced expression of cyclin E, a key regulator of the G1-to S-phase cell cycle transition, and nuclear mislocalization of the transcriptional factor Prospero, which is known to repress self-renewal genes and activate differentiating genes. Furthermore, RNA-seq analysis reveals downregulated Nb-and cell-cyclerelated genes and upregulated neuronal differentiation genes in Acsl mutant Nbs. As Drosophila Acsl and human ACSL4 are functionally conserved, our findings provide novel insights into a critical and previously unappreciated role of Acsl in neurogenesis and the pathogenesis of ACSL4-related ID.展开更多
基金L. Liang has been supported by a Stanford Graduate Fellow-ship and a Lubert Stryer Stanford Interdisciplinary Graduate Fellowship. L. Luo is an investigator at the Howard Hughes Medical InstituteOlfaction research in our lab has been supported by NIH grant R01-DC005982
文摘The olfactory circuit of the fruit fly Drosophila melanogaster has emerged in recent years as an excellent paradigm for studying the principles and mechanisms of information processing in neuronal circuits. We discuss here the organizational principles of the olfactory circuit that make it an attractive model for experimental manipulations, the lessons that have been learned, and future challenges.
基金supported by the grants from the Ministry of Science and Technology (2016YFA0501000)the National Science Foundation of China to YQZ (31490592) and AY (31271121)
文摘Mutations in long-chain acyl-CoA synthetase 4 (ACSL4) are associated with non-syndromic X-linked intellectual disability (ID). However, the neural functions of ACSL4 and how loss of ACSL4 leads to ID remain largely unexplored. We report here that mutations in Acsl, the Drosophila ortholog of human ACSL3 and ACSL4, result in developmental defects of the mushroom body (MB), the center of olfactory learning and memory. Specifically, Acsl mutants show fewer MB neuroblasts (Nbs) due to reduced proliferation activity and premature differentiation. Consistently, these surviving Nbs show reduced expression of cyclin E, a key regulator of the G1-to S-phase cell cycle transition, and nuclear mislocalization of the transcriptional factor Prospero, which is known to repress self-renewal genes and activate differentiating genes. Furthermore, RNA-seq analysis reveals downregulated Nb-and cell-cyclerelated genes and upregulated neuronal differentiation genes in Acsl mutant Nbs. As Drosophila Acsl and human ACSL4 are functionally conserved, our findings provide novel insights into a critical and previously unappreciated role of Acsl in neurogenesis and the pathogenesis of ACSL4-related ID.