Multivariate statistical process monitoring and control (MSPM&C) methods for chemical process monitoring with statistical projection techniques such as principal component analysis (PCA) and partial least squares ...Multivariate statistical process monitoring and control (MSPM&C) methods for chemical process monitoring with statistical projection techniques such as principal component analysis (PCA) and partial least squares (PLS) are surveyed in this paper. The four-step procedure of performing MSPM&C for chemical process, modeling of processes, detecting abnormal events or faults, identifying the variable(s) responsible for the faults and diagnosing the source cause for the abnormal behavior, is analyzed. Several main research directions of MSPM&C reported in the literature are discussed, such as multi-way principal component analysis (MPCA) for batch process, statistical monitoring and control for nonlinear process, dynamic PCA and dynamic PLS, and on-line quality control by inferential models. Industrial applications of MSPM&C to several typical chemical processes, such as chemical reactor, distillation column, polymerization process, petroleum refinery units, are summarized. Finally, some concluding remarks and future considerations are made.展开更多
In this paper, we bdefly address the application of the standard principal component analysis (PCA) technique to fault detection and identification. Based on an analysis of the existing test statistic, we propose a ...In this paper, we bdefly address the application of the standard principal component analysis (PCA) technique to fault detection and identification. Based on an analysis of the existing test statistic, we propose a new test statistic, which is similar to the Hawkin's T2 H statistic but without the numerical drawback. In comparison with the SPE index, the threshold setting associated with the new statistic is computationally simpler. Our further study is dedicated to the analysis of fault sensitivity. We consider the off-set and scaling faults, and evaluate the test statistic by viewing its sensitivity to the faults. Our final study focuses on identifying off-set and scaling faults. To this end, two algorithms are proposed. This paper also includes some critical remarks on the application of the PCA technique to fault diagnosis.展开更多
Abstract Data-driven tools, such as principal component analysis (PCA) and independent component analysis (ICA) have been applied to different benchmarks as process monitoring methods. The difference between the t...Abstract Data-driven tools, such as principal component analysis (PCA) and independent component analysis (ICA) have been applied to different benchmarks as process monitoring methods. The difference between the two methods is that the components of PCA are still dependent while ICA has no orthogonality constraint and its latentvariables are independent. Process monitoring with PCA often supposes that process data or principal components is Gaussian distribution. However, this kind of constraint cannot be satisfied by several practical processes. To ex-tend the use of PCA, a nonparametric method is added to PCA to overcome the difficulty, and kernel density estimation (KDE) is rather a good choice. Though ICA is based on non-Gaussian distribution intormation, .KDE can help in the close monitoring of the data. Methods, such as PCA, ICA, PCA.with .KDE(KPCA), and ICA with KDE,(KICA), are demonstrated and. compared by applying them to a practical industnal Spheripol craft polypropylene catalyzer reactor instead of a laboratory emulator.展开更多
The recent development of feature extraction algorithms with multiple layers in machine learning and pattern recognition has inspired many applications in multivariate statistical process monitoring. In this work, two...The recent development of feature extraction algorithms with multiple layers in machine learning and pattern recognition has inspired many applications in multivariate statistical process monitoring. In this work, two existing multi-layer linear approaches in fault detection are reviewed and a new one with extra layer is proposed in analogy. To provide a general framework for fault diagnosis in succession, this work also proposes the contribution propagation analysis which extends the original definition of contribution of variables in multivariate statistical process monitoring. In fault diagnosis stage, the proposed contribution propagation analysis for multilayer linear feature extraction algorithms is compared with the fault diagnosis results of original contribution plots associated with single layer feature extraction approach. Plots of variable contributions obtained by the aforementioned approaches on the data sets collected from a simulated benchmark case study(Tennessee Eastman process) as well as an industrial scale multiphase flow facility are presented as a demonstration of the usage and performance of the contribution propagation analysis on multi-layer linear algorithms.展开更多
In this study, a multivariate local quadratic polynomial regression(MLQPR) method is proposed to design a model for the sludge volume index(SVI). In MLQPR, a quadratic polynomial regression function is established to ...In this study, a multivariate local quadratic polynomial regression(MLQPR) method is proposed to design a model for the sludge volume index(SVI). In MLQPR, a quadratic polynomial regression function is established to describe the relationship between SVI and the relative variables, and the important terms of the quadratic polynomial regression function are determined by the significant test of the corresponding coefficients. Moreover, a local estimation method is introduced to adjust the weights of the quadratic polynomial regression function to improve the model accuracy. Finally, the proposed method is applied to predict the SVI values in a real wastewater treatment process(WWTP). The experimental results demonstrate that the proposed MLQPR method has faster testing speed and more accurate results than some existing methods.展开更多
Pulsed spray is a useful tool forgranule size control in fluid bed granulation.To improve the quality control of pulsed-spray fluid bed granulation,a combination of in-line near-infrared(NIR)spectroscopy and p「incipa...Pulsed spray is a useful tool forgranule size control in fluid bed granulation.To improve the quality control of pulsed-spray fluid bed granulation,a combination of in-line near-infrared(NIR)spectroscopy and p「incipal component analysis was used to develop multivariate statistical process control(MSPC)charts.Different types of MSPC charts were developed,including principal component score charts,Hotelling's T2 control charts,and distance to model X control charts,to monitor the batch evolution throughout the granulation process.Correlation optimized warping was used as an alignment method to deal with the time variation in batches caused by the granulation mechanism in MSPC modeling.The control charts developed in this study were validated on normal batches and tested on four batches that deviated from normal processing conditions to achieve real-time fault analysis.The results indicated that the NIR spectroscopy-based MSPC model included the variability in the sample set constituting the model and could withstand external variability.This research demonstrated the application of synchronized NIR spectra in conjunction w让h multivariate batch modeling as an attractive tool for process monitoring and a fault diagnosis method for effective process control in pulsed-spray fluid bed granulation.展开更多
This paper presents a systematic multivariate process capability index (MPCI) method, which may provide references for assuring and improving process quality levels while achieving an overall evaluation of process q...This paper presents a systematic multivariate process capability index (MPCI) method, which may provide references for assuring and improving process quality levels while achieving an overall evaluation of process quality. The system method includes a spatial MPCI model for multivariate normal distribution data, MPCI model based on factor weight for multivariate no-normal distribution application, and MPCI model based on yield foryield application. At last, examples for calculating MPCI are given, and the experimental results show that this systematic method is effective and practical.展开更多
After analyzing the multivariate Cpm method (Chan et al. 1991), this paper presents a spatial multivariate process capability index (PCI) method, which can solve a multivariate off-centered case and may provide re...After analyzing the multivariate Cpm method (Chan et al. 1991), this paper presents a spatial multivariate process capability index (PCI) method, which can solve a multivariate off-centered case and may provide references for assuring and improving process quality level while achieving an overall evaluation of process quality. Examples for calculating multivariate PCI are given and the experimental results show that the systematic method presented is effective and actual.展开更多
基金Supported by the National High-Tech Development Program of China(No.863-511-920-011,2001AA411230).
文摘Multivariate statistical process monitoring and control (MSPM&C) methods for chemical process monitoring with statistical projection techniques such as principal component analysis (PCA) and partial least squares (PLS) are surveyed in this paper. The four-step procedure of performing MSPM&C for chemical process, modeling of processes, detecting abnormal events or faults, identifying the variable(s) responsible for the faults and diagnosing the source cause for the abnormal behavior, is analyzed. Several main research directions of MSPM&C reported in the literature are discussed, such as multi-way principal component analysis (MPCA) for batch process, statistical monitoring and control for nonlinear process, dynamic PCA and dynamic PLS, and on-line quality control by inferential models. Industrial applications of MSPM&C to several typical chemical processes, such as chemical reactor, distillation column, polymerization process, petroleum refinery units, are summarized. Finally, some concluding remarks and future considerations are made.
文摘In this paper, we bdefly address the application of the standard principal component analysis (PCA) technique to fault detection and identification. Based on an analysis of the existing test statistic, we propose a new test statistic, which is similar to the Hawkin's T2 H statistic but without the numerical drawback. In comparison with the SPE index, the threshold setting associated with the new statistic is computationally simpler. Our further study is dedicated to the analysis of fault sensitivity. We consider the off-set and scaling faults, and evaluate the test statistic by viewing its sensitivity to the faults. Our final study focuses on identifying off-set and scaling faults. To this end, two algorithms are proposed. This paper also includes some critical remarks on the application of the PCA technique to fault diagnosis.
基金Supported by the National Natural Science Foundation of China (No.60574047) and the Doctorate Foundation of the State Education Ministry of China (No.20050335018).
文摘Abstract Data-driven tools, such as principal component analysis (PCA) and independent component analysis (ICA) have been applied to different benchmarks as process monitoring methods. The difference between the two methods is that the components of PCA are still dependent while ICA has no orthogonality constraint and its latentvariables are independent. Process monitoring with PCA often supposes that process data or principal components is Gaussian distribution. However, this kind of constraint cannot be satisfied by several practical processes. To ex-tend the use of PCA, a nonparametric method is added to PCA to overcome the difficulty, and kernel density estimation (KDE) is rather a good choice. Though ICA is based on non-Gaussian distribution intormation, .KDE can help in the close monitoring of the data. Methods, such as PCA, ICA, PCA.with .KDE(KPCA), and ICA with KDE,(KICA), are demonstrated and. compared by applying them to a practical industnal Spheripol craft polypropylene catalyzer reactor instead of a laboratory emulator.
基金supported by the funding from the European Union's Horizon 2020 research and innovation programme (No. 675215-PRONTO-H2020-MSCA-ITN2015)
文摘The recent development of feature extraction algorithms with multiple layers in machine learning and pattern recognition has inspired many applications in multivariate statistical process monitoring. In this work, two existing multi-layer linear approaches in fault detection are reviewed and a new one with extra layer is proposed in analogy. To provide a general framework for fault diagnosis in succession, this work also proposes the contribution propagation analysis which extends the original definition of contribution of variables in multivariate statistical process monitoring. In fault diagnosis stage, the proposed contribution propagation analysis for multilayer linear feature extraction algorithms is compared with the fault diagnosis results of original contribution plots associated with single layer feature extraction approach. Plots of variable contributions obtained by the aforementioned approaches on the data sets collected from a simulated benchmark case study(Tennessee Eastman process) as well as an industrial scale multiphase flow facility are presented as a demonstration of the usage and performance of the contribution propagation analysis on multi-layer linear algorithms.
文摘In this study, a multivariate local quadratic polynomial regression(MLQPR) method is proposed to design a model for the sludge volume index(SVI). In MLQPR, a quadratic polynomial regression function is established to describe the relationship between SVI and the relative variables, and the important terms of the quadratic polynomial regression function are determined by the significant test of the corresponding coefficients. Moreover, a local estimation method is introduced to adjust the weights of the quadratic polynomial regression function to improve the model accuracy. Finally, the proposed method is applied to predict the SVI values in a real wastewater treatment process(WWTP). The experimental results demonstrate that the proposed MLQPR method has faster testing speed and more accurate results than some existing methods.
基金the National Science and Technology Major Project(grant number 2018ZX09201011-002).
文摘Pulsed spray is a useful tool forgranule size control in fluid bed granulation.To improve the quality control of pulsed-spray fluid bed granulation,a combination of in-line near-infrared(NIR)spectroscopy and p「incipal component analysis was used to develop multivariate statistical process control(MSPC)charts.Different types of MSPC charts were developed,including principal component score charts,Hotelling's T2 control charts,and distance to model X control charts,to monitor the batch evolution throughout the granulation process.Correlation optimized warping was used as an alignment method to deal with the time variation in batches caused by the granulation mechanism in MSPC modeling.The control charts developed in this study were validated on normal batches and tested on four batches that deviated from normal processing conditions to achieve real-time fault analysis.The results indicated that the NIR spectroscopy-based MSPC model included the variability in the sample set constituting the model and could withstand external variability.This research demonstrated the application of synchronized NIR spectra in conjunction w让h multivariate batch modeling as an attractive tool for process monitoring and a fault diagnosis method for effective process control in pulsed-spray fluid bed granulation.
文摘This paper presents a systematic multivariate process capability index (MPCI) method, which may provide references for assuring and improving process quality levels while achieving an overall evaluation of process quality. The system method includes a spatial MPCI model for multivariate normal distribution data, MPCI model based on factor weight for multivariate no-normal distribution application, and MPCI model based on yield foryield application. At last, examples for calculating MPCI are given, and the experimental results show that this systematic method is effective and practical.
基金Project supported by the Natural Science Foundation of Shaanxi Province(No.2012JQ8048)the Basic Research Foundation of North-western Polytechnical University(No.JC20110232)
文摘After analyzing the multivariate Cpm method (Chan et al. 1991), this paper presents a spatial multivariate process capability index (PCI) method, which can solve a multivariate off-centered case and may provide references for assuring and improving process quality level while achieving an overall evaluation of process quality. Examples for calculating multivariate PCI are given and the experimental results show that the systematic method presented is effective and actual.