In this paper, the authors first establish the connections between the Herz-type Triebel-Lizorkin spaces and the well-known Herz-type spaces; the authors then study the pointwise multipliers for the Herz-type Triebel-...In this paper, the authors first establish the connections between the Herz-type Triebel-Lizorkin spaces and the well-known Herz-type spaces; the authors then study the pointwise multipliers for the Herz-type Triebel-Lizorkin spaces and show that pseudo-differential operators are bounded on these spaces by using pointwise multipliers.展开更多
Let¢ : Nn x [0,∞) -4 [0, ∞) be a function such that ¢(x,.) is an Orlicz function and ¢(.,t) ∈ Aloc∞(Nn) (the class of local weights introduced by Rychkov). In this paper, the authors introduce a loca...Let¢ : Nn x [0,∞) -4 [0, ∞) be a function such that ¢(x,.) is an Orlicz function and ¢(.,t) ∈ Aloc∞(Nn) (the class of local weights introduced by Rychkov). In this paper, the authors introduce a local Musielak-Orlicz Hardy space h¢(Nn) by the local grand maximal function, and a local BMO-type space bmo¢(Nn) which is further proved to be the dual space of h¢(Nn). As an application, the authors prove that the class of pointwise multipliers for the local BMO-type space bmo¢(Nn), characterized by Nakai and Yabuta, is just the dual of LI(Rn) + hФ0 (Rn), where Ф is an increasing function on (0, co) satisfying some additional growth conditions and Ф0 a Musielak-Orlicz function induced by Ф. Characterizations of h¢(Rn), including the atoms, the local vertical and the local nontangential maximal functions, are presented. Using the atomic char- acterization, the authors prove the existence of finite atomic decompositions achieving the norm in some dense subspaces of h¢(Rn), from which, the authors further deduce some criterions for the boundedness on h¢(Rn) of some sublinear operators. Finally, the authors show that the local Riesz transforms and some pseudo-differential operators are bounded on h¢(Rn).展开更多
Let k ∈ N.We prove that the lnultilinear operators of finite sums of products of singular integrals on R<sup>n</sup> are bounded from H K<sub>ql</sub><sup>αl·pl</sup>(R<s...Let k ∈ N.We prove that the lnultilinear operators of finite sums of products of singular integrals on R<sup>n</sup> are bounded from H K<sub>ql</sub><sup>αl·pl</sup>(R<sup>n</sup>)×…×HK<sub>qk</sub><sup>αk,pk</sup>(R<sup>n</sup>)into HK<sub>q</sub><sup>α,p</sup>(R<sup>n</sup>)if they have vanishing moments up to a certain order dictated by the target spaces.These conditions on vanishing moments satisfied by the multilinear operators are also necessary when α<sub>j</sub>(?)0 and the singular integrals considered here include the Calderón-Zygmund singular integrals and the fractional integrals of any orders.展开更多
Let T_σ be the bilinear Fourier multiplier operator with associated multiplier σ satisfying the Sobolev regularity that sup κ∈Z∥σ_κ∥W^s(R^(2n))< ∞ for some s ∈ (n, 2n]. In this paper, it is proved that th...Let T_σ be the bilinear Fourier multiplier operator with associated multiplier σ satisfying the Sobolev regularity that sup κ∈Z∥σ_κ∥W^s(R^(2n))< ∞ for some s ∈ (n, 2n]. In this paper, it is proved that the commutator generated by T_σ and CMO(R^n) functions is a compact operator from L^(p1)(R^n, w_1) × L^(p2)(R^n, w_2) to L^p(R^n, ν_w) for appropriate indices p_1, p_2, p ∈ (1, ∞) with1 p=1/ p_1 +1/ p_2 and weights w_1, w_2 such that w = (w_1, w_2) ∈ A_(p/t)(R^(2n)).展开更多
Let Op(f) be a pseudodifferential operator with symbol f∈ S m ρ,0 having constant coefficients. We prove that Op(f) generates a regularized semigroup or cosine function on C α (R n) (0<...Let Op(f) be a pseudodifferential operator with symbol f∈ S m ρ,0 having constant coefficients. We prove that Op(f) generates a regularized semigroup or cosine function on C α (R n) (0<α<1) when the symbol f(ξ) and its derivatives satisfy certain growth conditions.展开更多
In this note, some conditions of composition operators on DT spaces to be bounded are given by means of Carleson measures and pointwise multipliers, for some ranges of T. The authors prove that (i) Let 1 < T n + 2...In this note, some conditions of composition operators on DT spaces to be bounded are given by means of Carleson measures and pointwise multipliers, for some ranges of T. The authors prove that (i) Let 1 < T n + 2 and 2k < T 2k + 1 (or 2k - 1 < T 2k) for some positive integer k. Suppose = ( 1,… , n) be a univalent mapping from B into itself, denote dμj(l) (z) = R(l) j (z) 2(k-l+2) (1 - z 2)2k-t+1dv(z) for l= 1, 2,… , k + 1. If μj(l)-1 are (T - 2k + 2l-4)-Carleson measures for all l, then the composition operator C on DT is bounded; (ii) Let 1 < T n + 2, = ( 1,… , n) be univalent and the Frechet derivative of -1 be bounded on (B). If R j ∈ M(DT-2) for all j, then the composition operator C on DT is bounded; (iii) Let T > n + 2 and as in (ii). If j ∈ DT for all j, then the composition operator C on DT is bounded.展开更多
An equation concerning with the subdifferential of convex functionals defined in real Banach spaces and the metric projections to level sets is shown. The equation is compared with the resolvents of general monotone o...An equation concerning with the subdifferential of convex functionals defined in real Banach spaces and the metric projections to level sets is shown. The equation is compared with the resolvents of general monotone operators, and makes the geometric properties of differential equations expressed by subdifferentials clear. Hence, it can be expected to be useful in obtaining the steepest descents defined by the convex functionals in Banach spaces. Also, it gives a similar result to the Lagrange multiplier method under certain conditions.展开更多
In this paper,we introduce the work done on Hardy-Sobolev spaces and Fock-Sobolev spaces and their operators and operator algebras,including the study of boundedness,compactness,Fredholm property,index theory,spectrum...In this paper,we introduce the work done on Hardy-Sobolev spaces and Fock-Sobolev spaces and their operators and operator algebras,including the study of boundedness,compactness,Fredholm property,index theory,spectrum and essential spectrum,norm and essential norm,Schatten-p classes,and the C^(∗) algebras generated by them.展开更多
This paper treats systematically the semigroup method of non-elliptic differential operators, which was developed in the last ten years. In particular, a review of the applications of regularized semigroups to non-ell...This paper treats systematically the semigroup method of non-elliptic differential operators, which was developed in the last ten years. In particular, a review of the applications of regularized semigroups to non-elliptic differential operators with constant coefficients or time-dependent coefficients, parabolic systems, correct systems, abstract differential operators and pseudodifferential operators is given here. It is also shown that the regularized semigroup is an appropriate tool for non-elliptic differential operators and is far superior to the integrated semigroup approach.展开更多
In this paper, we give some new results of the coefficient multiplier of some analytic function spaces, characterize the coefficient multiplier spaces (Hα, p Hβ q) and (Ap,α), Aq,β) with 0 < p ≤ 1, p ≤ q ≤∞...In this paper, we give some new results of the coefficient multiplier of some analytic function spaces, characterize the coefficient multiplier spaces (Hα, p Hβ q) and (Ap,α), Aq,β) with 0 < p ≤ 1, p ≤ q ≤∞, 0 ≤α < β < ∞ and show (Hα∞, Hβ∞) = Hβ-α1 with 0 < α < β < ∞.展开更多
Let n 1 and Tm be the bilinear square Fourier multiplier operator associated with a symbol m,which is defined by Tm(f1, f2)(x) =(∫0^∞︱∫(Rn)^2)e^2πix·(ξ1+ξ2))m(tξ1, tξ2)f1(ξ1)f2(ξ2)d...Let n 1 and Tm be the bilinear square Fourier multiplier operator associated with a symbol m,which is defined by Tm(f1, f2)(x) =(∫0^∞︱∫(Rn)^2)e^2πix·(ξ1+ξ2))m(tξ1, tξ2)f1(ξ1)f2(ξ2)dξ1dξ2︱^2dt/t)^1/2.Let s be an integer with s ∈ [n + 1, 2n] and p0 be a number satisfying 2n/s p0 2. Suppose that νω=∏i^2=1ω^i^p/p) and each ωi is a nonnegative function on Rn. In this paper, we show that under some condition on m, Tm is bounded from L^p1(ω1) × L^p2(ω2) to L^p(νω) if p0 〈 p1, p2 〈 ∞ with 1/p = 1/p1 + 1/p2. Moreover,if p0 〉 2n/s and p1 = p0 or p2 = p0, then Tm is bounded from L^p1(ω1) × L^p2(ω2) to L^p,∞(νω). The weighted end-point L log L type estimate and strong estimate for the commutators of Tm are also given. These were done by considering the boundedness of some related multilinear square functions associated with mild regularity kernels and essentially improving some basic lemmas which have been used before.展开更多
基金Xu Jingshi was partially supported by NSF of Hunan in ChinaYang DaChun was partially supported by NNSF(10271015)and SEDF of China
文摘In this paper, the authors first establish the connections between the Herz-type Triebel-Lizorkin spaces and the well-known Herz-type spaces; the authors then study the pointwise multipliers for the Herz-type Triebel-Lizorkin spaces and show that pseudo-differential operators are bounded on these spaces by using pointwise multipliers.
基金supported by National Natural Science Foundation of China(Grant No.11171027)Program for Changjiang Scholars and Innovative Research Team in University of China
文摘Let¢ : Nn x [0,∞) -4 [0, ∞) be a function such that ¢(x,.) is an Orlicz function and ¢(.,t) ∈ Aloc∞(Nn) (the class of local weights introduced by Rychkov). In this paper, the authors introduce a local Musielak-Orlicz Hardy space h¢(Nn) by the local grand maximal function, and a local BMO-type space bmo¢(Nn) which is further proved to be the dual space of h¢(Nn). As an application, the authors prove that the class of pointwise multipliers for the local BMO-type space bmo¢(Nn), characterized by Nakai and Yabuta, is just the dual of LI(Rn) + hФ0 (Rn), where Ф is an increasing function on (0, co) satisfying some additional growth conditions and Ф0 a Musielak-Orlicz function induced by Ф. Characterizations of h¢(Rn), including the atoms, the local vertical and the local nontangential maximal functions, are presented. Using the atomic char- acterization, the authors prove the existence of finite atomic decompositions achieving the norm in some dense subspaces of h¢(Rn), from which, the authors further deduce some criterions for the boundedness on h¢(Rn) of some sublinear operators. Finally, the authors show that the local Riesz transforms and some pseudo-differential operators are bounded on h¢(Rn).
基金The second author is partially supported by the NNSF and the SEDF of Chinathe Grant-in-Aid for Scientific Research (11304009),Japan Society for the Promotion of Science
文摘Let k ∈ N.We prove that the lnultilinear operators of finite sums of products of singular integrals on R<sup>n</sup> are bounded from H K<sub>ql</sub><sup>αl·pl</sup>(R<sup>n</sup>)×…×HK<sub>qk</sub><sup>αk,pk</sup>(R<sup>n</sup>)into HK<sub>q</sub><sup>α,p</sup>(R<sup>n</sup>)if they have vanishing moments up to a certain order dictated by the target spaces.These conditions on vanishing moments satisfied by the multilinear operators are also necessary when α<sub>j</sub>(?)0 and the singular integrals considered here include the Calderón-Zygmund singular integrals and the fractional integrals of any orders.
基金supported by the National Natural Science Foundation of China(No.11371370)
文摘Let T_σ be the bilinear Fourier multiplier operator with associated multiplier σ satisfying the Sobolev regularity that sup κ∈Z∥σ_κ∥W^s(R^(2n))< ∞ for some s ∈ (n, 2n]. In this paper, it is proved that the commutator generated by T_σ and CMO(R^n) functions is a compact operator from L^(p1)(R^n, w_1) × L^(p2)(R^n, w_2) to L^p(R^n, ν_w) for appropriate indices p_1, p_2, p ∈ (1, ∞) with1 p=1/ p_1 +1/ p_2 and weights w_1, w_2 such that w = (w_1, w_2) ∈ A_(p/t)(R^(2n)).
文摘Let Op(f) be a pseudodifferential operator with symbol f∈ S m ρ,0 having constant coefficients. We prove that Op(f) generates a regularized semigroup or cosine function on C α (R n) (0<α<1) when the symbol f(ξ) and its derivatives satisfy certain growth conditions.
基金the Natural Science Foundation of Guangdong Province.
文摘In this note, some conditions of composition operators on DT spaces to be bounded are given by means of Carleson measures and pointwise multipliers, for some ranges of T. The authors prove that (i) Let 1 < T n + 2 and 2k < T 2k + 1 (or 2k - 1 < T 2k) for some positive integer k. Suppose = ( 1,… , n) be a univalent mapping from B into itself, denote dμj(l) (z) = R(l) j (z) 2(k-l+2) (1 - z 2)2k-t+1dv(z) for l= 1, 2,… , k + 1. If μj(l)-1 are (T - 2k + 2l-4)-Carleson measures for all l, then the composition operator C on DT is bounded; (ii) Let 1 < T n + 2, = ( 1,… , n) be univalent and the Frechet derivative of -1 be bounded on (B). If R j ∈ M(DT-2) for all j, then the composition operator C on DT is bounded; (iii) Let T > n + 2 and as in (ii). If j ∈ DT for all j, then the composition operator C on DT is bounded.
文摘An equation concerning with the subdifferential of convex functionals defined in real Banach spaces and the metric projections to level sets is shown. The equation is compared with the resolvents of general monotone operators, and makes the geometric properties of differential equations expressed by subdifferentials clear. Hence, it can be expected to be useful in obtaining the steepest descents defined by the convex functionals in Banach spaces. Also, it gives a similar result to the Lagrange multiplier method under certain conditions.
基金G.Cao was supported by the NNSF of China(Grant No.12071155)L.He was supported by the NNSF of China(Grant No.11871170).
文摘In this paper,we introduce the work done on Hardy-Sobolev spaces and Fock-Sobolev spaces and their operators and operator algebras,including the study of boundedness,compactness,Fredholm property,index theory,spectrum and essential spectrum,norm and essential norm,Schatten-p classes,and the C^(∗) algebras generated by them.
文摘This paper treats systematically the semigroup method of non-elliptic differential operators, which was developed in the last ten years. In particular, a review of the applications of regularized semigroups to non-elliptic differential operators with constant coefficients or time-dependent coefficients, parabolic systems, correct systems, abstract differential operators and pseudodifferential operators is given here. It is also shown that the regularized semigroup is an appropriate tool for non-elliptic differential operators and is far superior to the integrated semigroup approach.
文摘In this paper, we give some new results of the coefficient multiplier of some analytic function spaces, characterize the coefficient multiplier spaces (Hα, p Hβ q) and (Ap,α), Aq,β) with 0 < p ≤ 1, p ≤ q ≤∞, 0 ≤α < β < ∞ and show (Hα∞, Hβ∞) = Hβ-α1 with 0 < α < β < ∞.
基金supported by National Natural Science Foundation of China (Grant Nos. 11401175, 11501169 and 11471041)the Fundamental Research Funds for the Central Universities (Grant No. 2014KJJCA10)+2 种基金Program for New Century Excellent Talents in University (Grant No. NCET-13-0065)Grantin-Aid for Scientific Research (C) (Grant No. 15K04942)Japan Society for the Promotion of Science
文摘Let n 1 and Tm be the bilinear square Fourier multiplier operator associated with a symbol m,which is defined by Tm(f1, f2)(x) =(∫0^∞︱∫(Rn)^2)e^2πix·(ξ1+ξ2))m(tξ1, tξ2)f1(ξ1)f2(ξ2)dξ1dξ2︱^2dt/t)^1/2.Let s be an integer with s ∈ [n + 1, 2n] and p0 be a number satisfying 2n/s p0 2. Suppose that νω=∏i^2=1ω^i^p/p) and each ωi is a nonnegative function on Rn. In this paper, we show that under some condition on m, Tm is bounded from L^p1(ω1) × L^p2(ω2) to L^p(νω) if p0 〈 p1, p2 〈 ∞ with 1/p = 1/p1 + 1/p2. Moreover,if p0 〉 2n/s and p1 = p0 or p2 = p0, then Tm is bounded from L^p1(ω1) × L^p2(ω2) to L^p,∞(νω). The weighted end-point L log L type estimate and strong estimate for the commutators of Tm are also given. These were done by considering the boundedness of some related multilinear square functions associated with mild regularity kernels and essentially improving some basic lemmas which have been used before.