目的对医院出院病人调查表普遍存在的数据缺失进行填补与分析,以保证统计调查表的质量,为医院以及上级卫生部门了解现状,进行预策和决策提供技术支持和质量保证。方法运用SAS9.1,采用多重填补方法Markov Chain Monte Carlo(MCMC)模型对...目的对医院出院病人调查表普遍存在的数据缺失进行填补与分析,以保证统计调查表的质量,为医院以及上级卫生部门了解现状,进行预策和决策提供技术支持和质量保证。方法运用SAS9.1,采用多重填补方法Markov Chain Monte Carlo(MCMC)模型对缺失数据进行多次填补并综合分析。结果MCMC填补10次的结果最优。结论(Multiple Imputation)MI方法在解决医院出院病人调查表数据缺失时有优势,发挥空间较大,且填补效率较高。展开更多
在数据挖掘预处理中,数据缺失是最为常见的数据预处理问题之一。通常对所要挖掘的数据分布形式没有任何先验知识。在这种情况下,非参回归分析方法可以为数据缺失的处理提供一种效果很好的解决途径。据此,在缺失机制是随机缺失(Missing a...在数据挖掘预处理中,数据缺失是最为常见的数据预处理问题之一。通常对所要挖掘的数据分布形式没有任何先验知识。在这种情况下,非参回归分析方法可以为数据缺失的处理提供一种效果很好的解决途径。据此,在缺失机制是随机缺失(Missing at Random,MAR)和完全随机缺失(Missing Completely at Random,MCAR)的条件下,提出了一种处理数据缺失的新方法,即基于核函数的非参多重填补算法。模拟实验结果表明,算法的置信区间的覆盖率,区间长度,以及相对效率都比常用的NORM算法要好。展开更多
文摘目的对医院出院病人调查表普遍存在的数据缺失进行填补与分析,以保证统计调查表的质量,为医院以及上级卫生部门了解现状,进行预策和决策提供技术支持和质量保证。方法运用SAS9.1,采用多重填补方法Markov Chain Monte Carlo(MCMC)模型对缺失数据进行多次填补并综合分析。结果MCMC填补10次的结果最优。结论(Multiple Imputation)MI方法在解决医院出院病人调查表数据缺失时有优势,发挥空间较大,且填补效率较高。
文摘在数据挖掘预处理中,数据缺失是最为常见的数据预处理问题之一。通常对所要挖掘的数据分布形式没有任何先验知识。在这种情况下,非参回归分析方法可以为数据缺失的处理提供一种效果很好的解决途径。据此,在缺失机制是随机缺失(Missing at Random,MAR)和完全随机缺失(Missing Completely at Random,MCAR)的条件下,提出了一种处理数据缺失的新方法,即基于核函数的非参多重填补算法。模拟实验结果表明,算法的置信区间的覆盖率,区间长度,以及相对效率都比常用的NORM算法要好。