期刊文献+
共找到1篇文章
< 1 >
每页显示 20 50 100
一种基于2D-CNN深度学习的钻井事故等级预测新方法 被引量:3
1
作者 赵春兰 屈瑶 +4 位作者 王兵 范翔宇 赵鹏斐 李屹 何婷 《天然气工业》 EI CAS CSCD 北大核心 2022年第12期95-105,共11页
鉴于钻井安全事故分级风险评价过程中,存在安全事故风险指标较少且多为2分类预测的实际问题。为此,在利用模糊C均值算法确定钻井事故等级的分类的基础上,根据信息增益值对多维事故风险指标进行一次降维;进而将降维后的风险指标作为模型... 鉴于钻井安全事故分级风险评价过程中,存在安全事故风险指标较少且多为2分类预测的实际问题。为此,在利用模糊C均值算法确定钻井事故等级的分类的基础上,根据信息增益值对多维事故风险指标进行一次降维;进而将降维后的风险指标作为模型输入,由卷积层提取事故特征,池化层进行二次降维,构建双层2D-CNN的事故等级预测模型,最后通过激活函数(Softmax)判断钻井事故等级,提出一种基于二维卷积神经网络(2D-CNN)的钻井事故等级预测的新方法。研究结果表明:①较之于其他方法,新方法经过两次降维将多维钻井事故指标由73维降低至4维,降低模型计算复杂度;②不同于钻井事故发生与否的二分类问题,根据事故的严重程度划分成四种事故等级,以实现多分类预测;③现场应用效果表明,新方法的准确率为91.7%,损失值为0.409,预测效果优于BP神经网络模型和1D-CNN模型。结论认为,新方法能较好地将现场作业数据用于钻井事故等级的预测,对于钻井事故风险分级评价具有广泛应用和推广价值。 展开更多
关键词 多维钻井事故 事故等级 多分类预测 深度学习 二维卷积神经网络 模糊C均值算法 信息增益
下载PDF
上一页 1 下一页 到第
使用帮助 返回顶部