A novel optimization design method for the multiphase pump impeller is proposed through combining the quasi-3D hydraulic design(Q3DHD), the boundary vortex flux(BVF) diagnosis, and the genetic algorithm(GA). The...A novel optimization design method for the multiphase pump impeller is proposed through combining the quasi-3D hydraulic design(Q3DHD), the boundary vortex flux(BVF) diagnosis, and the genetic algorithm(GA). The BVF diagnosis based on the Q3DHD is used to evaluate the objection function. Numerical simulations and hydraulic performance tests are carried out to compare the impeller designed only by the Q3DHD method and that optimized by the presented method. The comparisons of both the flow fields simulated under the same condition show that(1) the pressure distribution in the optimized impeller is more reasonable and the gas-liquid separation is more efficiently inhibited,(2) the scales of the gas pocket and the vortex decrease remarkably for the optimized impeller,(3) the unevenness of the BVF distributions near the shroud of the original impeller is effectively eliminated in the optimized impeller. The experimental results show that the differential pressure and the maximum efficiency of the optimized impeller are increased by 4% and 2.5%, respectively. Overall, the study indicates that the optimization design method proposed in this paper is feasible.展开更多
The numerical simulation of the axial flow impeller blood pump NIVADIII is carried out by using a CFD multiphase flow model. The hydrodynamic performance of the pump and the flow field in the pump are analyzed, and th...The numerical simulation of the axial flow impeller blood pump NIVADIII is carried out by using a CFD multiphase flow model. The hydrodynamic performance of the pump and the flow field in the pump are analyzed, and the shear stress distribution is obtained. A hemolytic prediction model based on the shear stress is built based on the calculation results, and it can be used for qua- ntitative predictions of the hemolytic behavior of a blood pump. Hemolysis tests in vitro were performed 6 times with fresh bovine blood. At each time, the flow of the pump NIVADIII is 5 L/min and the outflow tract pressure is 100 mmHg. According to the tests, the plasma free hemoglobin (FHB) content and the hematocrit (HCT) are measured after 0 s, 0.5 s, 1 s, 1.5 s 4 s. At the end of each experiment Normal Index of Hemolysis (NIH) of NIVADIII is calculated. The average of NIH is 0.0055 g/100L, almost identi- cal with that obtained from the hemolytic prediction model. This method can be applied in the selection stage of a blood pump.展开更多
基金Project supported by the National Natural Science Foundation of China(Grant No.51209217)
文摘A novel optimization design method for the multiphase pump impeller is proposed through combining the quasi-3D hydraulic design(Q3DHD), the boundary vortex flux(BVF) diagnosis, and the genetic algorithm(GA). The BVF diagnosis based on the Q3DHD is used to evaluate the objection function. Numerical simulations and hydraulic performance tests are carried out to compare the impeller designed only by the Q3DHD method and that optimized by the presented method. The comparisons of both the flow fields simulated under the same condition show that(1) the pressure distribution in the optimized impeller is more reasonable and the gas-liquid separation is more efficiently inhibited,(2) the scales of the gas pocket and the vortex decrease remarkably for the optimized impeller,(3) the unevenness of the BVF distributions near the shroud of the original impeller is effectively eliminated in the optimized impeller. The experimental results show that the differential pressure and the maximum efficiency of the optimized impeller are increased by 4% and 2.5%, respectively. Overall, the study indicates that the optimization design method proposed in this paper is feasible.
基金Project supported by the National High Technology Research and Development Program of China (863 Program,Grant No. 2007AA02Z439)The Key Disciplines Group Construction Project of Pudong Health Bureau of Shanghai (Grant No. PKzxkq2010-01)the Outstanding Leaders Training Program of Pudong Health Bureau of Shanghai (Grant No.PKR2011-01)
文摘The numerical simulation of the axial flow impeller blood pump NIVADIII is carried out by using a CFD multiphase flow model. The hydrodynamic performance of the pump and the flow field in the pump are analyzed, and the shear stress distribution is obtained. A hemolytic prediction model based on the shear stress is built based on the calculation results, and it can be used for qua- ntitative predictions of the hemolytic behavior of a blood pump. Hemolysis tests in vitro were performed 6 times with fresh bovine blood. At each time, the flow of the pump NIVADIII is 5 L/min and the outflow tract pressure is 100 mmHg. According to the tests, the plasma free hemoglobin (FHB) content and the hematocrit (HCT) are measured after 0 s, 0.5 s, 1 s, 1.5 s 4 s. At the end of each experiment Normal Index of Hemolysis (NIH) of NIVADIII is calculated. The average of NIH is 0.0055 g/100L, almost identi- cal with that obtained from the hemolytic prediction model. This method can be applied in the selection stage of a blood pump.