financially supported by the Key R&D Program of Jiangxi Province of China (20152ACF60010);the Key Projects of Hunan Science and Technology Support Program of China (Application research of Guiye A male sterile lin...financially supported by the Key R&D Program of Jiangxi Province of China (20152ACF60010);the Key Projects of Hunan Science and Technology Support Program of China (Application research of Guiye A male sterile line);the Research Project of Humanities and Social Sciences in Universities of Jiangxi Province, China(JC1315);supported by Emmy Noether DFG grant MA 6473/1-1展开更多
Significant attenuation and overheating, caused by the absorption of the excitation band (980 nm) in water, are the major obstacles in the in vivo application of lanthanide-doped upconversion nanoparticles (UCNPs)...Significant attenuation and overheating, caused by the absorption of the excitation band (980 nm) in water, are the major obstacles in the in vivo application of lanthanide-doped upconversion nanoparticles (UCNPs). Therefore, appropriately- structured Nd3^+-doped UCNPs with 808 nm excitation could be a promising alternative. Herein, we developed core-shell-shell structured Nd3^+-sensitized UCNPs as imaging agents, and decorated them onto the surface of polydopamine (PDA) to construct a novel multifunctional core/satellite nanotheranostic (PDA@UCNPs) for in vivo imaging guidance photothermal therapy using single 808 nm laser irradiation. The core-shell-shell structured design enabled outstanding upconversion luminescence properties and strong X-ray attenuation, thereby making the nanocomposites potential candidates for excellent upconversion luminescence/computed tomography dual modal imaging. In addition, the PDA core not only provides high photothermal conversion efficiency and outstanding antitumor effect, but also endows the platform with robust biocompatibility owing to its natural features. Therefore, this multifunctional nanocomposite could be a promising theranostic in future oncotherapy, with high therapeutic effectiveness but low side effects. This study would stimulate interest in designing bio- application-compatible multifunctional nanocomposites, especially for cancer diagnosis and treatment in vivo.展开更多
Polymeric hydrogels are fascinating platforms as 3D scaffolds for tissue repair and delivery systems of therapeutic molecules and cells.Among others,methacrylated gelatin(GelMA)has become a representative hydrogel for...Polymeric hydrogels are fascinating platforms as 3D scaffolds for tissue repair and delivery systems of therapeutic molecules and cells.Among others,methacrylated gelatin(GelMA)has become a representative hydrogel formulation,finding various biomedical applications.Recent efforts on GelMA-based hydrogels have been devoted to combining them with bioactive and functional nanomaterials,aiming to provide enhanced physicochemical and biological properties to GelMA.The benefits of this approach are multiple:i)reinforcing mechanical properties,ii)modulating viscoelastic property to allow 3D printability of bio-inks,iii)rendering electrical/magnetic property to produce electro-/magneto-active hydrogels for the repair of specific tissues(e.g.,muscle,nerve),iv)providing stimuli-responsiveness to actively deliver therapeutic molecules,and v)endowing therapeutic capacity in tissue repair process(e.g.,antioxidant effects).The nanomaterial-combined GelMA systems have shown significantly enhanced and extraordinary behaviors in various tissues(bone,skin,cardiac,and nerve)that are rarely observable with GelMA.Here we systematically review these recent efforts in nanomaterials-combined GelMA hydrogels that are considered as next-generation multifunctional platforms for tissue therapeutics.The approaches used in GelMA can also apply to other existing polymeric hydrogel systems.展开更多
The main function of traditional proppants is to provide and maintain conductive fractures during well production where proppants should meet closure stress requirement and show resistance to diagenesis under downhole...The main function of traditional proppants is to provide and maintain conductive fractures during well production where proppants should meet closure stress requirement and show resistance to diagenesis under downhole conditions.Many different proppants have been developed in the oil&gas industry,with various types,sizes,shapes,and applications.While most proppants are simply made of silica or ceramics,advanced proppants like ultra-lightweight proppant is also desirable since it reduces proppant settling and requires low viscosity fluids to transport.Additionally,multifunctional proppants may be used as a crude way to detect hydraulic fracture geometry or as matrices to slowly release downhole chemical additives,besides their basic function of maintaining conductive hydraulic fractures.Different from the conventional approach where proppant is pumped downhole in frac fluids,a revolutionary way to generate in-situ spherical proppants has been reported recently.This paper presents a comprehensive review of over 100 papers published in the past several decades on the subject.The objectives of this review study are to provide an overview of current proppant technologies,including different types,compositions,and shapes of proppants,new technologies to pump and organize proppants downhole such as channel fracturing,and also in-situ proppant generation.Finally,the paper sheds light on the current challenges and emphasizes needs for new proppant development for unconventional resources.展开更多
Metasurfaces have attracted great attention due to their ability to manipulate the phase,amplitude,and polarization of light in a compact form.Tunable metasurfaces have been investigated recently through the integrati...Metasurfaces have attracted great attention due to their ability to manipulate the phase,amplitude,and polarization of light in a compact form.Tunable metasurfaces have been investigated recently through the integration with mechanically moving components and electrically tunable elements.Two interesting applications,in particular,are to vary the focal point of metalenses and to switch between holographic images.We present the recent progress on tunable metasurfaces focused on metalenses and metaholograms,including the basic working principles,advantages,and disadvantages of each working mechanism.We classify the tunable stimuli based on the light source and electrical bias,as well as others such as thermal and mechanical modulation.We conclude by summarizing the recent progress of metalenses and metaholograms,and providing our perspectives for the further development of tunable metasurfaces.展开更多
Conventional lithium-ion batteries(LIBs)with graphite anodes are approaching their theoretical limitations in energy density.Replacing the conventional graphite anodes with high-capacity Si-based anodes represents one...Conventional lithium-ion batteries(LIBs)with graphite anodes are approaching their theoretical limitations in energy density.Replacing the conventional graphite anodes with high-capacity Si-based anodes represents one of the most promising strategies to greatly boost the energy density of LIBs.However,the inherent huge volume expansion of Si-based materials after lithiation and the resulting series of intractable problems,such as unstable solid electrolyte interphase layer,cracking of electrode,and especially the rapid capacity degradation of cells,severely restrict the practical application of Sibased anodes.Over the past decade,numerous reports have demonstrated that polymer binders play a critical role in alleviating the volume expansion and maintaining the integrity and stable cycling of Si-based anodes.In this review,the state-of-the-art designing of polymer binders for Si-based anodes have been systematically summarized based on their structures,including the linear,branched,crosslinked,and conjugated conductive polymer binders.Especially,the comprehensive designing of multifunctional polymer binders,by a combination of multiple structures,interactions,crosslinking chemistries,ionic or electronic conductivities,soft and hard segments,and so forth,would be promising to promote the practical application of Si-based anodes.Finally,a perspective on the rational design of practical polymer binders for the large-scale application of Si-based anodes is presented.展开更多
基金financially supported by the Key R&D Program of Jiangxi Province of China (20152ACF60010)the Key Projects of Hunan Science and Technology Support Program of China (Application research of Guiye A male sterile line)+1 种基金the Research Project of Humanities and Social Sciences in Universities of Jiangxi Province, China(JC1315)supported by Emmy Noether DFG grant MA 6473/1-1
文摘financially supported by the Key R&D Program of Jiangxi Province of China (20152ACF60010);the Key Projects of Hunan Science and Technology Support Program of China (Application research of Guiye A male sterile line);the Research Project of Humanities and Social Sciences in Universities of Jiangxi Province, China(JC1315);supported by Emmy Noether DFG grant MA 6473/1-1
基金Acknowledgements This work was supported by the financial aid from the National Natural Science Foundation of China (Nos. 51502284, 51372242, 51402286, 21521092, 21590794, and 21210001), the Hong Kong, Macao and Taiwan Science and Technology Cooperation Special Project of Ministry of Science and Technology of China (No. 2014DFT10310), the Program of Science and Technology Development Plan of Jilin Province of China (No. 20140201007GX), the National Basic Research Program of China (No. 2014CB643802), the Strategic Priority Research Program of the Chinese Academy of Sciences (No. XDB20030300) and the Jilin Province Youth Foundation (No. 20150520007JH).
文摘Significant attenuation and overheating, caused by the absorption of the excitation band (980 nm) in water, are the major obstacles in the in vivo application of lanthanide-doped upconversion nanoparticles (UCNPs). Therefore, appropriately- structured Nd3^+-doped UCNPs with 808 nm excitation could be a promising alternative. Herein, we developed core-shell-shell structured Nd3^+-sensitized UCNPs as imaging agents, and decorated them onto the surface of polydopamine (PDA) to construct a novel multifunctional core/satellite nanotheranostic (PDA@UCNPs) for in vivo imaging guidance photothermal therapy using single 808 nm laser irradiation. The core-shell-shell structured design enabled outstanding upconversion luminescence properties and strong X-ray attenuation, thereby making the nanocomposites potential candidates for excellent upconversion luminescence/computed tomography dual modal imaging. In addition, the PDA core not only provides high photothermal conversion efficiency and outstanding antitumor effect, but also endows the platform with robust biocompatibility owing to its natural features. Therefore, this multifunctional nanocomposite could be a promising theranostic in future oncotherapy, with high therapeutic effectiveness but low side effects. This study would stimulate interest in designing bio- application-compatible multifunctional nanocomposites, especially for cancer diagnosis and treatment in vivo.
基金supported by the grants(2015K1A1A2032163,2020R1I1A1A01071828,2018K1A4A3A01064257,2021R1A5A2022318,2018R1D1A1B07048020),National Research Foundation(NRF),Republic of Korea.
文摘Polymeric hydrogels are fascinating platforms as 3D scaffolds for tissue repair and delivery systems of therapeutic molecules and cells.Among others,methacrylated gelatin(GelMA)has become a representative hydrogel formulation,finding various biomedical applications.Recent efforts on GelMA-based hydrogels have been devoted to combining them with bioactive and functional nanomaterials,aiming to provide enhanced physicochemical and biological properties to GelMA.The benefits of this approach are multiple:i)reinforcing mechanical properties,ii)modulating viscoelastic property to allow 3D printability of bio-inks,iii)rendering electrical/magnetic property to produce electro-/magneto-active hydrogels for the repair of specific tissues(e.g.,muscle,nerve),iv)providing stimuli-responsiveness to actively deliver therapeutic molecules,and v)endowing therapeutic capacity in tissue repair process(e.g.,antioxidant effects).The nanomaterial-combined GelMA systems have shown significantly enhanced and extraordinary behaviors in various tissues(bone,skin,cardiac,and nerve)that are rarely observable with GelMA.Here we systematically review these recent efforts in nanomaterials-combined GelMA hydrogels that are considered as next-generation multifunctional platforms for tissue therapeutics.The approaches used in GelMA can also apply to other existing polymeric hydrogel systems.
文摘The main function of traditional proppants is to provide and maintain conductive fractures during well production where proppants should meet closure stress requirement and show resistance to diagenesis under downhole conditions.Many different proppants have been developed in the oil&gas industry,with various types,sizes,shapes,and applications.While most proppants are simply made of silica or ceramics,advanced proppants like ultra-lightweight proppant is also desirable since it reduces proppant settling and requires low viscosity fluids to transport.Additionally,multifunctional proppants may be used as a crude way to detect hydraulic fracture geometry or as matrices to slowly release downhole chemical additives,besides their basic function of maintaining conductive hydraulic fractures.Different from the conventional approach where proppant is pumped downhole in frac fluids,a revolutionary way to generate in-situ spherical proppants has been reported recently.This paper presents a comprehensive review of over 100 papers published in the past several decades on the subject.The objectives of this review study are to provide an overview of current proppant technologies,including different types,compositions,and shapes of proppants,new technologies to pump and organize proppants downhole such as channel fracturing,and also in-situ proppant generation.Finally,the paper sheds light on the current challenges and emphasizes needs for new proppant development for unconventional resources.
基金financially supported by the POSCO-POSTECH-RIST Convergence Research Center program funded by POSCOthe National Research Foundation (NRF) grants (Grant Nos. NRF2019R1A2C3003129, CAMM-2019M3A6B3030637, and NRF-2019R1A5A8080290) funded by the Ministry of Science and ICT, Republic of Korea+1 种基金the Hyundai Motor Chung Mong-Koo fellowshipthe NRF fellowship (Grant No. NRF-2021R1A6A3A13038935) funded by the Ministry of Education, Republic of Korea
文摘Metasurfaces have attracted great attention due to their ability to manipulate the phase,amplitude,and polarization of light in a compact form.Tunable metasurfaces have been investigated recently through the integration with mechanically moving components and electrically tunable elements.Two interesting applications,in particular,are to vary the focal point of metalenses and to switch between holographic images.We present the recent progress on tunable metasurfaces focused on metalenses and metaholograms,including the basic working principles,advantages,and disadvantages of each working mechanism.We classify the tunable stimuli based on the light source and electrical bias,as well as others such as thermal and mechanical modulation.We conclude by summarizing the recent progress of metalenses and metaholograms,and providing our perspectives for the further development of tunable metasurfaces.
基金Beijing National Laboratory for Molecular Sciences,Grant/Award Number:2019BMS20022National Natural Science Foundation of China,Grant/Award Number:22005314+3 种基金Strategic Priority Research Program of the Chinese Academy of Sciences,Grant/Award Number:XDA21070300The China Postdoctoral Science Foundation,Grant/Award Number:2019M660805The National Key R&D Program of China,Grant/Award Number:2019YFA0705600The Special Financial Grant from the China Postdoctoral Science Foundation,Grant/Award Number:2020T130658。
文摘Conventional lithium-ion batteries(LIBs)with graphite anodes are approaching their theoretical limitations in energy density.Replacing the conventional graphite anodes with high-capacity Si-based anodes represents one of the most promising strategies to greatly boost the energy density of LIBs.However,the inherent huge volume expansion of Si-based materials after lithiation and the resulting series of intractable problems,such as unstable solid electrolyte interphase layer,cracking of electrode,and especially the rapid capacity degradation of cells,severely restrict the practical application of Sibased anodes.Over the past decade,numerous reports have demonstrated that polymer binders play a critical role in alleviating the volume expansion and maintaining the integrity and stable cycling of Si-based anodes.In this review,the state-of-the-art designing of polymer binders for Si-based anodes have been systematically summarized based on their structures,including the linear,branched,crosslinked,and conjugated conductive polymer binders.Especially,the comprehensive designing of multifunctional polymer binders,by a combination of multiple structures,interactions,crosslinking chemistries,ionic or electronic conductivities,soft and hard segments,and so forth,would be promising to promote the practical application of Si-based anodes.Finally,a perspective on the rational design of practical polymer binders for the large-scale application of Si-based anodes is presented.