期刊文献+
共找到22篇文章
< 1 2 >
每页显示 20 50 100
A High Performance Multifrontal Code for Linear Solution of Structures Using Multi-Core Microprocessors
1
作者 Efe Guney Kenneth Will 《Tsinghua Science and Technology》 SCIE EI CAS 2008年第S1期34-39,共6页
A multifrontal code is introduced for the efficient solution of the linear system of equations arising from the analysis of structures. The factorization phase is reduced into a series of interleaved element assembly ... A multifrontal code is introduced for the efficient solution of the linear system of equations arising from the analysis of structures. The factorization phase is reduced into a series of interleaved element assembly and dense matrix operations for which the BLAS3 kernels are used. A similar approach is generalized for the forward and back substitution phases for the efficient solution of structures having multiple load conditions. The program performs all assembly and solution steps in parallel. Examples are presented which demonstrate the code’s performance on single and dual core processor computers. 展开更多
关键词 multifrontal method Cholesky decomposition high performance computing finite element method multi-core programming BLAS3 parallel computing
原文传递
THE CLOSED-FORM SOLUTION OF VECTOR FINITE ELEMENT INTEGRAL EQUATIONS FOR THREE DIMENSIONAL ELECTROMAGNETIC ANALYSIS
2
作者 Tian Jin Gong Li +2 位作者 Shi Xiaowei Lv Zhiqing Liu Xing 《Journal of Electronics(China)》 2011年第4期602-608,共7页
In this paper,a set of closed-form formulas for vector Finite Element Method(FEM) to analyze three dimensional electromagnetic problems is presented on the basis of Gaussian quadrature integration scheme.By analyzing ... In this paper,a set of closed-form formulas for vector Finite Element Method(FEM) to analyze three dimensional electromagnetic problems is presented on the basis of Gaussian quadrature integration scheme.By analyzing the open region problems,the first-order Absorbing Boundary Condition(ABC) is considered as the truncation boundary condition and the equation is carried out in a closed-form.Based on the formulas,the hybrid Expanded Cholesky Method(ECM) and MultiFrontal algorithm(MF) is applied to solve finite element equations.Using the closed-form solution,the elec-tromagnetic field of three dimensional targets can be studied sententiously and accurately.Simulation results show that the presented formulas are successfully and concise,which can be easily used to analyze three dimensional electromagnetic problems. 展开更多
关键词 Vector Finite Element Method(FEM) Absorbing Boundary Condition(ABC) Ex-panded Cholesky Method(ECM) multifrontal algorithm(MF)
下载PDF
An efficient block variant of robust structured multifrontal factorization method
3
作者 左宪禹 莫则尧 谷同祥 《Chinese Physics B》 SCIE EI CAS CSCD 2013年第8期225-232,共8页
Based on the two-dimensional three-temperature (2D3T) radiation diffusion equations and its discrete system, using the block diagonal structure of the three-temperature matrix, the reordering and symbolic decomposit... Based on the two-dimensional three-temperature (2D3T) radiation diffusion equations and its discrete system, using the block diagonal structure of the three-temperature matrix, the reordering and symbolic decomposition parts of the RSMF method are replaced with corresponding block operation in order to improve the solution efficiency. We call this block form method block RSMF (in brief, BRSMF) method. The new BRSMF method not only makes the reordering and symbolic decomposition become more effective, but also keeps the cost of numerical factorization from increasing and ensures the precision of solution very well. The theoretical analysis of the computation complexity about the new BRSMF method shows that the solution efficiency about the BRSMF method is higher than the original RSMF method. The numerical experiments also show that the new BRSMF method is more effective than the original RSMF method. 展开更多
关键词 HSS structure low-rank property multifrontal method two-dimensional three-temperature radia-tive diffusion equations
下载PDF
A sweeping preconditioner for Yee's finite difference approximation of time-harmonic Maxwell's equations
4
作者 Paul TSUJI Lexing YING 《Frontiers of Mathematics in China》 SCIE CSCD 2012年第2期347-363,共17页
This paper is concerned with the fast iterative solution of linear systems arising from finite difference discretizations in electromagnetics. The sweeping preconditioner with moving perfectly matched layers previousl... This paper is concerned with the fast iterative solution of linear systems arising from finite difference discretizations in electromagnetics. The sweeping preconditioner with moving perfectly matched layers previously developed for the Helmholtz equation is adapted for the popular Yee grid scheme for wave propagation in inhomogeneous, anisotropic media. Preliminary numerical results are presented for typical examples. 展开更多
关键词 Electromagnetic scattering Yee grid finite difference methods perfectly matched layers LDLT factorizations multifrontal method wave propagation in inhomogeneous and anisotropic media matrix preconditioners
原文传递
ANALYSIS OF WAVEGUIDE PROBLEMS USING A RELAXED ITERATIVE DOMAIN DECOMPOSITION METHOD COMBINED WITH MULTIFRONTAL ALGORITHM 被引量:2
5
作者 Zhu Hanqing Wu Zhengde (Applied Physics Institute, University of Electronic Science and Technology of China, Chengdu 610054)K. M. Luk(Department of Electronic Eng., City University of Hong Kong, Kowloon, Hong Kong SAR, China) 《Journal of Electronics(China)》 2003年第2期110-115,共6页
In this paper, an absorbing Fictitious Boundary Condition (FBC) is presented to generate an iterative Domain Decomposition Method (DDM) for analyzing waveguide problems.The relaxed algorithm is introduced to improve t... In this paper, an absorbing Fictitious Boundary Condition (FBC) is presented to generate an iterative Domain Decomposition Method (DDM) for analyzing waveguide problems.The relaxed algorithm is introduced to improve the iterative convergence. And the matrix equations are solved using the multifrontal algorithm. The resulting CPU time is greatly reduced.Finally, a number of numerical examples are given to illustrate its accuracy and efficiency. 展开更多
关键词 Fictitious boundary condition Domain decomposition method Relaxed algorithm multifrontal algorithm Waveguide problem
下载PDF
Schur Complement Computations in Intel^(■) Math Kernel Library PARDISO 被引量:2
6
作者 Alexander Kalinkin Anton Anders Roman Anders 《Applied Mathematics》 2015年第2期304-311,共8页
This paper describes a method of calculating the Schur complement of a sparse positive definite matrix A. The main idea of this approach is to represent matrix A in the form of an elimination tree using a reordering a... This paper describes a method of calculating the Schur complement of a sparse positive definite matrix A. The main idea of this approach is to represent matrix A in the form of an elimination tree using a reordering algorithm like METIS and putting columns/rows for which the Schur complement is needed into the top node of the elimination tree. Any problem with a degenerate part of the initial matrix can be resolved with the help of iterative refinement. The proposed approach is close to the “multifrontal” one which was implemented by Ian Duff and others in 1980s. Schur complement computations described in this paper are available in Intel&reg;Math Kernel Library (Intel&reg;MKL). In this paper we present the algorithm for Schur complement computations, experiments that demonstrate a negligible increase in the number of elements in the factored matrix, and comparison with existing alternatives. 展开更多
关键词 multifrontal Method Direct Method Sparse Linear System Schur Complement HPC Intel^(■) MKL
下载PDF
一种用于有损耗慢波结构有限元本征分析的混合多波前块ILU-p型多重网格预处理 被引量:1
7
作者 王浩 徐立 李斌 《真空科学与技术学报》 EI CAS CSCD 北大核心 2015年第2期201-206,共6页
提出了一种全新的混合多波前块ILU-p型多重网格预处理,用于在行波管有损耗慢波结构的三维有限元本征分析中产生的复数不对称的大型稀疏线性方程组的迭代求解。本文提出并采用了改进的多波前法和超块不完全分解算法,用以提升该预处理的... 提出了一种全新的混合多波前块ILU-p型多重网格预处理,用于在行波管有损耗慢波结构的三维有限元本征分析中产生的复数不对称的大型稀疏线性方程组的迭代求解。本文提出并采用了改进的多波前法和超块不完全分解算法,用以提升该预处理的整体性能。这种预处理技术的运用,使得有损耗慢波结构的三维有限元本征分析更加精确、快速。在大量慢波结构的仿真中,采用这种预处理技术的有限元本征分析算法体现出了高效的计算和内存性能,与商业软件HFSS相比具有明显优势,这对于设计出高性能行波管慢波结构具有重要意义。 展开更多
关键词 行波管 慢波结构 有限元法 多波前法 p型多重网格预处理
下载PDF
Intel^(■) Math Kernel Library PARDISO* forIntel^(■) Xeon Phi^(TM) Manycore Coprocessor
8
作者 Alexander Kalinkin Anton Anders Roman Anders 《Applied Mathematics》 2015年第8期1276-1281,共6页
The paper describes an efficient direct method to solve an equation Ax = b, where A is a sparse matrix, on the Intel&reg;Xeon PhiTM coprocessor. The main challenge for such a system is how to engage all available ... The paper describes an efficient direct method to solve an equation Ax = b, where A is a sparse matrix, on the Intel&reg;Xeon PhiTM coprocessor. The main challenge for such a system is how to engage all available threads (about 240) and how to reduce OpenMP* synchronization overhead, which is very expensive for hundreds of threads. The method consists of decomposing A into a product of lower-triangular, diagonal, and upper triangular matrices followed by solves of the resulting three subsystems. The main idea is based on the hybrid parallel algorithm used in the Intel&reg;Math Kernel Library Parallel Direct Sparse Solver for Clusters [1]. Our implementation exploits a static scheduling algorithm during the factorization step to reduce OpenMP synchronization overhead. To effectively engage all available threads, a three-level approach of parallelization is used. Furthermore, we demonstrate that our implementation can perform up to 100 times better on factorization step and up to 65 times better in terms of overall performance on the 240 threads of the Intel&reg;Xeon PhiTM coprocessor. 展开更多
关键词 multifrontal Method Direct Method Sparse Linear System HPC OpenMP* Intel^(■) MKL Intel^(■) Xeon Phi^(TM) Coprocessor
下载PDF
矢量有限元素法在随钻电阻率测井模拟中的应用 被引量:27
9
作者 张中庆 穆林雪 +2 位作者 张雪 李飞虎 王卓远 《中国石油大学学报(自然科学版)》 EI CAS CSCD 北大核心 2011年第4期64-71,共8页
在三维非均匀介质中,提出一种新型的矢量有限元素法(FEM),用来模拟随钻(LWD)电阻率测井仪器的响应。在斜井和水平井中,成层的介质空间被离散成多个四面体单元,每个四面体有6个矢量棱边元。在三维地层模型中,未知数个数可以超过一百万个... 在三维非均匀介质中,提出一种新型的矢量有限元素法(FEM),用来模拟随钻(LWD)电阻率测井仪器的响应。在斜井和水平井中,成层的介质空间被离散成多个四面体单元,每个四面体有6个矢量棱边元。在三维地层模型中,未知数个数可以超过一百万个,采用代数多重网格结合多重前线解法,使用个人计算机即可求解这样大规模的线性方程。通过已发表的时域有限差分法(FDTD)的数值结果和实际测井数据,对仿真结果的有效性进行了双重验证。由此开发的算法已应用到模拟井眼、偏心、倾角、围岩校正和其他一些三维的测井响应中。所提方法也能为LWD电阻率测井仪器的设计提供理论支持。 展开更多
关键词 随钻测井 数值模拟 矢量有限元素法 多重前线解法 代数多重网格
下载PDF
大规模电力系统快速潮流计算方法研究 被引量:24
10
作者 夏沛 汪芳宗 《电力系统保护与控制》 EI CSCD 北大核心 2012年第9期38-42,共5页
直接法和迭代法是求解线性方程组的两类常见方法,比较了多波前算法(MA)、GMRES算法、FGMRES算法在大规模电力系统潮流计算中的求解效率。经IEEE118节点、300节点和Poland共7个算例仿真测试表明,基于ILU分解法预条件子的FGMRES算法的内... 直接法和迭代法是求解线性方程组的两类常见方法,比较了多波前算法(MA)、GMRES算法、FGMRES算法在大规模电力系统潮流计算中的求解效率。经IEEE118节点、300节点和Poland共7个算例仿真测试表明,基于ILU分解法预条件子的FGMRES算法的内迭代次数较GMRES算法明显减少,但整体求解时间较GMRES算法长;多波前算法的求解速度较二者快。基于PQ分解法预条件子,提出一种GMRES-MA混合算法,在GMRES算法每步迭代过程生成Krylov子空间后,利用多波前算法(MA)直接求解辅助预处理方程组。算例测试结果表明,随着系统规模的增长,该方法的内迭代次数较GMRES算法有所减少,并且计算时间较GMRES算法和多波前算法(MA)均有所降低,适合于大规模电力系统潮流计算的快速求解。 展开更多
关键词 大规模电力系统 潮流计算 多波前算法(MA) GMRES算法 FGMRES算法 GMRES—MA混合算法
下载PDF
结合频域有限差分法分析二维柱体电磁散射 被引量:10
11
作者 朱汉清 吴正德 K.M.Luk 《电子科技大学学报》 EI CAS CSCD 北大核心 2001年第5期445-448,共4页
引入多波前算法,提出了结合频域有限差分法分析二维柱体的电磁散射问题。数值计算过程中利用Murs二阶吸收边界条件和场平均吸收条件截断网格;作为算例,分析了一无限长理想导体柱对平面电磁波的散射,由于使用了多波前算法求解差分矩阵方... 引入多波前算法,提出了结合频域有限差分法分析二维柱体的电磁散射问题。数值计算过程中利用Murs二阶吸收边界条件和场平均吸收条件截断网格;作为算例,分析了一无限长理想导体柱对平面电磁波的散射,由于使用了多波前算法求解差分矩阵方程,大大地减少了计算时间,数值结果表明了该方法的有效性。 展开更多
关键词 频域有限差分法 多波前算法 吸收边界条件 电磁散射 二维柱体
下载PDF
应用多波前法快速求解最优协调电压控制问题 被引量:4
12
作者 郑文杰 刘明波 《电力系统自动化》 EI CSCD 北大核心 2011年第2期11-17,共7页
将长期电压稳定场景下的协调电压控制问题用带有微分—代数方程约束的最优控制模型来描述,借助Radau排列技术将这个动态优化问题转化为大型非线性规划模型,并采用非线性原—对偶内点法求解。重点探讨如何应用多波前方法结合近似最小度... 将长期电压稳定场景下的协调电压控制问题用带有微分—代数方程约束的最优控制模型来描述,借助Radau排列技术将这个动态优化问题转化为大型非线性规划模型,并采用非线性原—对偶内点法求解。重点探讨如何应用多波前方法结合近似最小度排序提高求解稀疏线性修正方程的效率。以IEEE 17机162节点系统和新英格兰10机39节点系统作为算例,通过与近似最小度法和反向Cuthill-McKee法排序下三角分解结果进行对比,证实了所述方法在计算速度上的优越性。 展开更多
关键词 电压稳定 最优协调电压控制 非线性规划 Radau排列 非线性原—对偶内点法 多波前法 近似最小度法 反向Cuthill-McKee法
下载PDF
基于图形处理器的多波前潮流计算方法 被引量:3
13
作者 徐得超 陈勇 +2 位作者 王伟 江涵 郑然 《高电压技术》 EI CAS CSCD 北大核心 2016年第10期3301-3307,共7页
为提高潮流计算中线性方程组的求解速度,提出了基于图形处理器(GPU)的多波前潮流计算方法。采用多波前方法将稀疏的Jacobia矩阵分解成一系列小的稠密矩阵;再采用中央处理器-图形处理器(CPU–GPU)异构模式对得到的稠密矩阵进行处理,将计... 为提高潮流计算中线性方程组的求解速度,提出了基于图形处理器(GPU)的多波前潮流计算方法。采用多波前方法将稀疏的Jacobia矩阵分解成一系列小的稠密矩阵;再采用中央处理器-图形处理器(CPU–GPU)异构模式对得到的稠密矩阵进行处理,将计算耗时的矩阵分配给GPU,不耗时的分配给CPU;并设计了下三角矩阵按列存储、上三角矩阵按行存储的LU矩阵乘算法。对3个实际算例和5个人工算例进行了测试。实验结果表明,所提方案的性能与佛罗里达州立大学UMFPACK软件包实现的性能相比有显著提高;且随着测试数据规模的增大,GPU对更新矩阵的处理速度越快,最高可达到3.95倍的加速比。 展开更多
关键词 潮流计算 多波前方法 图形处理器 任务分配 矩阵乘算法 并行计算
下载PDF
采用多波前法求解大型结构方程组 被引量:2
14
作者 陈英时 吴文勇 +2 位作者 黄真康 童慧波 焦柯 《建筑结构》 CSCD 北大核心 2007年第9期138-140,共3页
多波前法算法可以求解十万个自由度以上的大型结构方程组,其求解速度和存储效率都优于传统算法,并可统一处理病态矩阵。基于大型工程的数值模拟验证了多波前法的稳定与高效。该方法已应用在深圳市广厦软件有限公司的"建筑结构通用... 多波前法算法可以求解十万个自由度以上的大型结构方程组,其求解速度和存储效率都优于传统算法,并可统一处理病态矩阵。基于大型工程的数值模拟验证了多波前法的稳定与高效。该方法已应用在深圳市广厦软件有限公司的"建筑结构通用分析与设计软件GSSAP"中。 展开更多
关键词 结构方程 刚度矩阵 稀疏矩阵 多波前法计算机 数值方法
下载PDF
多波前算法在电力系统分析计算中的应用 被引量:2
15
作者 何一帆 汪芳宗 张汉雄 《计算技术与自动化》 2009年第4期88-91,共4页
以IEEE检验系统为例,通过数值试验将多波前算法与电力系统分析中常用的稀疏三角分解技术进行对比分析。数值试验结果表明,在串行计算平台上,多波前算法相对于稀疏三角分解技术具有更好的计算效率,因而更适合于现代大规模电力系统的分析... 以IEEE检验系统为例,通过数值试验将多波前算法与电力系统分析中常用的稀疏三角分解技术进行对比分析。数值试验结果表明,在串行计算平台上,多波前算法相对于稀疏三角分解技术具有更好的计算效率,因而更适合于现代大规模电力系统的分析计算。此外,多波前算法更易于并行化,而且是一种适合于可重构计算系统的新方法。 展开更多
关键词 多波前算法 潮流计算 暂态稳定性分析 并行计算 可重构计算
下载PDF
可重构技术在电力系统实时计算中的应用
16
作者 杨力森 《电气传动自动化》 2009年第6期39-42,共4页
可重构计算技术是一类新兴的高性能计算技术。简述了可重构计算这一新的技术,并概述了可重构计算技术在电力系统潮流及暂态稳定性计算中的应用。可重构计算技术结合适当的计算方法,可以大大提高电力系统分析计算的效率,因而在现代大规... 可重构计算技术是一类新兴的高性能计算技术。简述了可重构计算这一新的技术,并概述了可重构计算技术在电力系统潮流及暂态稳定性计算中的应用。可重构计算技术结合适当的计算方法,可以大大提高电力系统分析计算的效率,因而在现代大规模电力系统实时分析计算及控制中具有广泛的应用前景。 展开更多
关键词 可重构计算 FPGA 并行计算 多波前算法
下载PDF
二维导体柱电磁散射特性分析
17
作者 金本喜 周平 《淮阴师范学院学报(自然科学版)》 CAS 2005年第3期207-210,共4页
提出了应用有限元法结合吸收边界条件分析二维导体柱的电磁散射特性.首先利用一阶吸收边界条件来截断散射体外的无限区域,然后应用有限元法进行分析,形成矩阵方程,最后应用多波前法求解该方程.作为算例,分别计算了无限长理想导体方柱和... 提出了应用有限元法结合吸收边界条件分析二维导体柱的电磁散射特性.首先利用一阶吸收边界条件来截断散射体外的无限区域,然后应用有限元法进行分析,形成矩阵方程,最后应用多波前法求解该方程.作为算例,分别计算了无限长理想导体方柱和圆柱对平面电磁波的雷达散射截面,结果与有关文献一致,数值结果表明了该方法的有效性. 展开更多
关键词 有限元法 吸收边界条件 电磁散射 多波前法
下载PDF
有限差分结合多波前算法分析波导问题
18
作者 刘淑静 《淮阴师范学院学报(自然科学版)》 CAS 2004年第4期285-288,共4页
采用有限差分法(FiniteDifferenceMethod)的五点差分离散对Helmholtz方程进行离散,并结合多波前算法(MultifrontalAlgorithm)求解稀疏矩阵方程,用于分析波导问题.数值结果表明,该方法是一种准确而有效的快速算法.
关键词 有限差分法 多波前算法 波导问题
下载PDF
一种用于有损耗慢波结构有限元本征分析的多波前块ILU预处理
19
作者 王浩 徐立 李斌 《微波学报》 CSCD 北大核心 2014年第S1期65-67,共3页
多波前块ILU(MFIBLU)预处理是一种用于处理有损耗行波管慢波结构三维有限元本征分析中产生的大型复数不对称线性广义本征问题的预处理技术。"改进的多波前法"和"新型不完全分解块算法"的引入,使得这种预处理技术更... 多波前块ILU(MFIBLU)预处理是一种用于处理有损耗行波管慢波结构三维有限元本征分析中产生的大型复数不对称线性广义本征问题的预处理技术。"改进的多波前法"和"新型不完全分解块算法"的引入,使得这种预处理技术更加高效。大量慢波结构的仿真实验,显示了这种新型预处理能够以很小的内存花销、精确、快速地获得慢波结构的高频参数。因此,此种预处理技术能够在降低了设计成本的情况下,使得慢波结构的设计更加高效,这对于设计出高效的行波管慢波结构具有重要意义。 展开更多
关键词 行波管 慢波结构 有限元 多波前法 ILU分解
下载PDF
任意截面形状二维介质柱电磁散射特性
20
作者 金本喜 周平 《淮阴师范学院学报(自然科学版)》 CAS 2008年第4期275-278,283,共5页
应用有限元结合多波前法分析任意截面形状二维介质柱的电磁散射特性.首先利用二阶吸收边界条件来截断散射体外的无限区域,然后应用有限元法进行分析,形成待求矩阵方程,最后应用多波前法求解该方程.作为算例,分别计算了无限长介质方柱和... 应用有限元结合多波前法分析任意截面形状二维介质柱的电磁散射特性.首先利用二阶吸收边界条件来截断散射体外的无限区域,然后应用有限元法进行分析,形成待求矩阵方程,最后应用多波前法求解该方程.作为算例,分别计算了无限长介质方柱和圆柱在平面电磁波照射下的雷达散射截面,结果与有关文献一致;计算了两种形状不规则柱体的雷达散射截面.数值结果表明,使用多波前法解有限元方程,可以减少了计算时间. 展开更多
关键词 有限元法 多波前法 吸收边界条件 电磁散射 雷达散射截面
下载PDF
上一页 1 2 下一页 到第
使用帮助 返回顶部