Based on entransy dissipation, the mean temperature difference of solenoid (electromagnet) with high thermal conductivity material inserted is deduced, which can be taken as the fundament for heat transfer optimizatio...Based on entransy dissipation, the mean temperature difference of solenoid (electromagnet) with high thermal conductivity material inserted is deduced, which can be taken as the fundament for heat transfer optimization using the extremum principle of entransy dissipation. Then, the electromagnet working at steady state (constant magnetic field, constant heat generating rate per unit volume) is optimized for entransy dissipation minimization (i.e. mean temperature difference minimization) with and without volume constraint. Besides, the effect of high thermal conductivity material on the magnetic field is analyzed, and the minimum mean temperature versus volume and magnetic induction characteristic are also studied.展开更多
基金Supported by the Program for New Century Excellent Talents in University of China (Grant No. NCET-04-1006)Foundation for the Author of National Excellent Doctoral Dissertation of China (Grant No. 200136)
文摘Based on entransy dissipation, the mean temperature difference of solenoid (electromagnet) with high thermal conductivity material inserted is deduced, which can be taken as the fundament for heat transfer optimization using the extremum principle of entransy dissipation. Then, the electromagnet working at steady state (constant magnetic field, constant heat generating rate per unit volume) is optimized for entransy dissipation minimization (i.e. mean temperature difference minimization) with and without volume constraint. Besides, the effect of high thermal conductivity material on the magnetic field is analyzed, and the minimum mean temperature versus volume and magnetic induction characteristic are also studied.