The spatial structure and multi-scale feature of the atmospheric pollution influence domain of Beijing and its peripheral areas (a rapidly developed city agglomeration) is dissected and analyzed in this paper on the b...The spatial structure and multi-scale feature of the atmospheric pollution influence domain of Beijing and its peripheral areas (a rapidly developed city agglomeration) is dissected and analyzed in this paper on the basis of the atmospheric pollution dynamic-chemical process observation data of the urban building ensemble boundary layer of the Beijing City Air Pollution Observation Experiment (BECAPEX) in winter (February) and summer (August) 2003, and relevant meteorological elements and satellite retrieval aerosol optical depth (AOD), etc. comprehensive data with the dynamic-statistical integrated analysis of 'point-surface' spatial structure. Results show that there existed significant difference in the contribution of winter/summer different pollution emission sources to the component character of atmospheric pollution, and the principal component analysis (PCA) results of statistical model also indicate that SO2 and NOx dominated in the component structure of winter aerosol particle; instead, CO and NOxdominated in summer. Surface layer atmospheric dynamic and thermal structures and various pollutant species at the upper boundary of building ensembles at urban different observational sites of Beijing in winter and summer showed an 'in-phase' variation and its spatial scale feature of 'influence domain'. The power spectrum analysis (PSA) shows that the period spectrum of winter/summer particle concentration accorded with those of atmospheric wind field: the longer period was dominative in winter, but the shorter period in summer, revealing the impact of the seasonal scale feature of winter/summer atmospheric general circulation on the period of atmospheric pollution variations. It is found that from analyzing urban area thermal heterogeneity that the multi-scale effect of Beijing region urban heat island (UHI) was associated with the heterogeneous expansion of tall buildings area. In urban atmospheric dynamical and thermal characteristic spatial structures, the turbulent scale feature of the urban boundary la展开更多
Based on Argo sea surface salinity(SSS) and the related precipitation(P), evaporation(E), and sea surface height data sets, the climatological annual mean and low-frequency variability in SSS in the global ocean and t...Based on Argo sea surface salinity(SSS) and the related precipitation(P), evaporation(E), and sea surface height data sets, the climatological annual mean and low-frequency variability in SSS in the global ocean and their relationship with ocean circulation and climate change were analyzed. Meanwhile, together with previous studies, a brief retrospect and prospect of seawater salinity were given in this work. Freshwater flux(E-P) dominated the mean pattern of SSS, while the dynamics of ocean circulation modulated the spatial structure and low-frequency variability in SSS in most regions. Under global warming, the trend in SSS indicated the intensification of the global hydrological cycle, and featured a decreasing trend at low and high latitudes and an increasing trend in subtropical regions. In the most recent two decades, global warming has slowed down, which is called the"global warming hiatus". The trend in SSS during this phase, which was different to that under global warming, mainly indicated the response of the ocean surface to the decadal and multi-decadal variability in the climate system, referring to the intensification of the Walker Circulation. The significant contrast of SSS trends between the western Pacific and the southeastern Indian Ocean suggested the importance of oceanic dynamics in the cross-basin interaction in recent decades. Ocean Rossby waves and the Indonesian Throughflow contributed to the freshening trend in SSS in the southeastern Indian Ocean, while the increasing trend in the southeastern Pacific and the decreasing trend in the northern Atlantic implied a long-term linear trend under global warming. In the future, higher resolution SSS data observed by satellites, together with Argo observations, will help to extend our knowledge on the dynamics of mesoscale eddies, regional oceanography, and climate change.展开更多
Understanding the responses of precipitation extremes to global climate change remains limited owing to their poor representations in models and complicated interactions with multi-scale systems.Here we take the recor...Understanding the responses of precipitation extremes to global climate change remains limited owing to their poor representations in models and complicated interactions with multi-scale systems.Here we take the record-breaking precipitation over China in 2021 as an example,and study its changes under three different climate scenarios through a developed pseudo-global-warming(PGW)experimental framework with 60-3 km variable-resolution global ensemble modeling.Compared to the present climate,the precipitation extreme under a warmer(cooler)climate increased(decreased)in intensity,coverage,and total amount at a range of 24.3%-37.8%(18.7%-56.1%).With the help of the proposed PGW experimental framework,we further reveal the impacts of the multi-scale system interactions in climate change on the precipitation extreme.Under the warmer climate,large-scale water vapor transport converged from double typhoons and the subtropical high marched into central China,enhancing the convective energy and instability on the leading edge of the transport belt.As a result,the mesoscale convective system(Mcs)that directly contributed to the precipitation extreme became stronger than that in the present climate.On the contrary,the cooler climate displayed opposite changing characteristics relative to the warmer climate,ranging from the large-scale systems to local environments and to the Mcs.In summary,our study provides a promising approach to scientifically assess the response of precipitation extremes to climate change,making it feasible to perform ensemble simulations while investigating the multi-scale system interactions over the globe.展开更多
A new long-pulse high electron temperature(Te)regime has been achieved on experimental advanced superconducting tokamak by pure radio frequency heating.In this new scenario,there are mainly two confinement states invo...A new long-pulse high electron temperature(Te)regime has been achieved on experimental advanced superconducting tokamak by pure radio frequency heating.In this new scenario,there are mainly two confinement states involving two magneto-hydrodynamic(MHD)modes,one of which is identified as m/n=1/1 kink mode(where m and n are the poloidal and toroidal mode numbers,respectively).The frequency evolution of the kink mode is investigated through the three-dimensional,toroidal,and nonlinear Hall-MHD code CLT.We firstly find that the frequency of the m/n=1/1 kink mode significantly increases during each sawtooth crash and then confirmed it through the experimental data.The simulation results indicate that the increase of the mode frequency is mainly due to the significant increase of the electron diamagnetic frequency nearby the reconnection region.We have also observed the internal transport barrier(ITB)during the m/n=1/1 kink mode.To further investigate this m/n=1/1 kink mode in this new regime,the multi-scale interactions between the m/n=1/1 kink mode and turbulence are discussed.展开更多
The modeling of porous medium has many applications whose techniques can be used in the fields of automotive, aerospace, oil exploration, and biomedical. This work concentrates on the Noise and Vibration (NV) developm...The modeling of porous medium has many applications whose techniques can be used in the fields of automotive, aerospace, oil exploration, and biomedical. This work concentrates on the Noise and Vibration (NV) development of automotive interiors but the ideas can be translated to the aforementioned areas. The NV development requires the setting of NV targets at dif-ferent levels. These targets are then translated to TL (Transmission Loss), IL (Insertion Loss), and Alpha (absorption) performance. Therefore, the ability to manage an efficient product development cycle, that entails analyzing vibro-acoustic environments, hinges on the premise that accurate TL, IL, or Alpha values pertaining to the different multi-layered porous materials can be calculated. Thus, there is a need to have a thorough understanding of the physics behind the energy dissipating mechanism that includes the effects of the fluid meandering through the pores of the material. The goal of this series is to model the acoustic and dynamic coupling via multi-scale and homogenizations techniques, thus subsequently understand where to incorporate the concepts of dynamic tortuosity, viscous and thermal permeability, as well as viscous and thermal lengths. This study will allow the ability to get a better understanding of the underlying processes and also provides tools to create practical concepts for determining the coefficients of the macroscopic equations. This will assist in attaining novel ideas for NV absorption and insulation.展开更多
This paper presents some remarks on the perspectives of process engineering in the 21st century extracted from the discussion at the workshop. It is considered that the field will be upgraded by introducing knowledge ...This paper presents some remarks on the perspectives of process engineering in the 21st century extracted from the discussion at the workshop. It is considered that the field will be upgraded by introducing knowledge in other fields, extended to even more applications by generalizing the relevant methods, and unified to, at least covered by, the complexity science. Transdisciplinarity is necessary to cope with this challenge.展开更多
文摘The spatial structure and multi-scale feature of the atmospheric pollution influence domain of Beijing and its peripheral areas (a rapidly developed city agglomeration) is dissected and analyzed in this paper on the basis of the atmospheric pollution dynamic-chemical process observation data of the urban building ensemble boundary layer of the Beijing City Air Pollution Observation Experiment (BECAPEX) in winter (February) and summer (August) 2003, and relevant meteorological elements and satellite retrieval aerosol optical depth (AOD), etc. comprehensive data with the dynamic-statistical integrated analysis of 'point-surface' spatial structure. Results show that there existed significant difference in the contribution of winter/summer different pollution emission sources to the component character of atmospheric pollution, and the principal component analysis (PCA) results of statistical model also indicate that SO2 and NOx dominated in the component structure of winter aerosol particle; instead, CO and NOxdominated in summer. Surface layer atmospheric dynamic and thermal structures and various pollutant species at the upper boundary of building ensembles at urban different observational sites of Beijing in winter and summer showed an 'in-phase' variation and its spatial scale feature of 'influence domain'. The power spectrum analysis (PSA) shows that the period spectrum of winter/summer particle concentration accorded with those of atmospheric wind field: the longer period was dominative in winter, but the shorter period in summer, revealing the impact of the seasonal scale feature of winter/summer atmospheric general circulation on the period of atmospheric pollution variations. It is found that from analyzing urban area thermal heterogeneity that the multi-scale effect of Beijing region urban heat island (UHI) was associated with the heterogeneous expansion of tall buildings area. In urban atmospheric dynamical and thermal characteristic spatial structures, the turbulent scale feature of the urban boundary la
基金supported by the Chinese Academy of Sciences(Grant No.XDA19060501)the State Oceanic Administration of China(Grant No.GASI-IPOV AI-02)the National Natural Science Foundation of China(Grant Nos.41525019,41506019&41830538)
文摘Based on Argo sea surface salinity(SSS) and the related precipitation(P), evaporation(E), and sea surface height data sets, the climatological annual mean and low-frequency variability in SSS in the global ocean and their relationship with ocean circulation and climate change were analyzed. Meanwhile, together with previous studies, a brief retrospect and prospect of seawater salinity were given in this work. Freshwater flux(E-P) dominated the mean pattern of SSS, while the dynamics of ocean circulation modulated the spatial structure and low-frequency variability in SSS in most regions. Under global warming, the trend in SSS indicated the intensification of the global hydrological cycle, and featured a decreasing trend at low and high latitudes and an increasing trend in subtropical regions. In the most recent two decades, global warming has slowed down, which is called the"global warming hiatus". The trend in SSS during this phase, which was different to that under global warming, mainly indicated the response of the ocean surface to the decadal and multi-decadal variability in the climate system, referring to the intensification of the Walker Circulation. The significant contrast of SSS trends between the western Pacific and the southeastern Indian Ocean suggested the importance of oceanic dynamics in the cross-basin interaction in recent decades. Ocean Rossby waves and the Indonesian Throughflow contributed to the freshening trend in SSS in the southeastern Indian Ocean, while the increasing trend in the southeastern Pacific and the decreasing trend in the northern Atlantic implied a long-term linear trend under global warming. In the future, higher resolution SSS data observed by satellites, together with Argo observations, will help to extend our knowledge on the dynamics of mesoscale eddies, regional oceanography, and climate change.
基金supported by the National Natural Science Foundation of China(42225505)the Beijing Nova Program(Z211100002121100)+2 种基金the National Key Research and Development Program of China(2021YFC3000805)the National Natural Science Foundation of China(U2142204)the Science&Technology Development Fund of Chinese Academy of Meteorological Sciences(CAMS)(2022KJ007)。
文摘Understanding the responses of precipitation extremes to global climate change remains limited owing to their poor representations in models and complicated interactions with multi-scale systems.Here we take the record-breaking precipitation over China in 2021 as an example,and study its changes under three different climate scenarios through a developed pseudo-global-warming(PGW)experimental framework with 60-3 km variable-resolution global ensemble modeling.Compared to the present climate,the precipitation extreme under a warmer(cooler)climate increased(decreased)in intensity,coverage,and total amount at a range of 24.3%-37.8%(18.7%-56.1%).With the help of the proposed PGW experimental framework,we further reveal the impacts of the multi-scale system interactions in climate change on the precipitation extreme.Under the warmer climate,large-scale water vapor transport converged from double typhoons and the subtropical high marched into central China,enhancing the convective energy and instability on the leading edge of the transport belt.As a result,the mesoscale convective system(Mcs)that directly contributed to the precipitation extreme became stronger than that in the present climate.On the contrary,the cooler climate displayed opposite changing characteristics relative to the warmer climate,ranging from the large-scale systems to local environments and to the Mcs.In summary,our study provides a promising approach to scientifically assess the response of precipitation extremes to climate change,making it feasible to perform ensemble simulations while investigating the multi-scale system interactions over the globe.
基金supported by the National Magnetic Confinement Fusion Science Program of China (No. 11505226)National Natural Science Foundation of China (Nos. 11975273 and 12005185)+2 种基金the Fundamental Research Fund for Chinese Central Universities (No. 2021FZZX003-03-02)the Science Foundation of Institute of Plasma Physics, Chinese Academy of Sciences (Nos. DSJJ-202103 and DSJJ-2021-08)the National Key R&D Program of China (No. 2019YFE03010002)
文摘A new long-pulse high electron temperature(Te)regime has been achieved on experimental advanced superconducting tokamak by pure radio frequency heating.In this new scenario,there are mainly two confinement states involving two magneto-hydrodynamic(MHD)modes,one of which is identified as m/n=1/1 kink mode(where m and n are the poloidal and toroidal mode numbers,respectively).The frequency evolution of the kink mode is investigated through the three-dimensional,toroidal,and nonlinear Hall-MHD code CLT.We firstly find that the frequency of the m/n=1/1 kink mode significantly increases during each sawtooth crash and then confirmed it through the experimental data.The simulation results indicate that the increase of the mode frequency is mainly due to the significant increase of the electron diamagnetic frequency nearby the reconnection region.We have also observed the internal transport barrier(ITB)during the m/n=1/1 kink mode.To further investigate this m/n=1/1 kink mode in this new regime,the multi-scale interactions between the m/n=1/1 kink mode and turbulence are discussed.
文摘The modeling of porous medium has many applications whose techniques can be used in the fields of automotive, aerospace, oil exploration, and biomedical. This work concentrates on the Noise and Vibration (NV) development of automotive interiors but the ideas can be translated to the aforementioned areas. The NV development requires the setting of NV targets at dif-ferent levels. These targets are then translated to TL (Transmission Loss), IL (Insertion Loss), and Alpha (absorption) performance. Therefore, the ability to manage an efficient product development cycle, that entails analyzing vibro-acoustic environments, hinges on the premise that accurate TL, IL, or Alpha values pertaining to the different multi-layered porous materials can be calculated. Thus, there is a need to have a thorough understanding of the physics behind the energy dissipating mechanism that includes the effects of the fluid meandering through the pores of the material. The goal of this series is to model the acoustic and dynamic coupling via multi-scale and homogenizations techniques, thus subsequently understand where to incorporate the concepts of dynamic tortuosity, viscous and thermal permeability, as well as viscous and thermal lengths. This study will allow the ability to get a better understanding of the underlying processes and also provides tools to create practical concepts for determining the coefficients of the macroscopic equations. This will assist in attaining novel ideas for NV absorption and insulation.
文摘This paper presents some remarks on the perspectives of process engineering in the 21st century extracted from the discussion at the workshop. It is considered that the field will be upgraded by introducing knowledge in other fields, extended to even more applications by generalizing the relevant methods, and unified to, at least covered by, the complexity science. Transdisciplinarity is necessary to cope with this challenge.