An advanced ceramic cutting tool material Al2O3/TiC/TiN (LTN) is developed by incorporation and dispersion of micro-scale TiC particle and nano-scale TiN particle in alumina matrix. With the optimal dispersing and f...An advanced ceramic cutting tool material Al2O3/TiC/TiN (LTN) is developed by incorporation and dispersion of micro-scale TiC particle and nano-scale TiN particle in alumina matrix. With the optimal dispersing and fabricating technology, this multi-scale and multi-phase nanocomposite ceramic tool material can get both higher flexural strength and fracture toughness than that of A1203/TiC (LZ) ceramic tool material without nano-scale TiN particle, especially the fracture toughness can reach to 7.8 MPa . m^0.5. The nano-scale TiN can lead to the grain fining effect and promote the sintering process to get a higher density. The coexisting transgranular and intergranular fracture mode induced by micro-scale TiC and nano-scale TiN, and the homogeneous and densified microstructure can result in a remarkable strengthening and toughening effect. The cutting performance and wear mechanisms of the advanced multi-scale and multi-phase nanocomposite ceramic cutting tool are researched.展开更多
To celebrate the 90th birthday of Professor Mooson Kwauk, who supervised the multi-scale research at this Institute in the last three decades, we dedicate this paper outlining our thoughts on this subject accumulated ...To celebrate the 90th birthday of Professor Mooson Kwauk, who supervised the multi-scale research at this Institute in the last three decades, we dedicate this paper outlining our thoughts on this subject accumulated from our previous studies. In the process of developing, improving and extending the energy- minimization multi-scale (EMMS) method, we have gradually recognized that meso-scales are critical to the understanding of the different kinds of multi-scale structures and systems. It is a common challenge not only for chemical engineering but also for almost all disciplines of science and engineering, due to its importance in bridging micro- and macro-behaviors and in displaying complexity and diversity. It is believed that there may exist a common law behind meso-scales of different problems, possibly even in different fields. Therefore, a breakthrough in the understanding of meso-scales will help materialize a revolutionary progress, with respect to modeling, computation and application.展开更多
基金Selected from Proceedings of the 7th International Conference on Frontiers of DesignManufacturing(ICFDM'2006)This project is supported by National Natural Science Foundation of China(No.50275086)the University of New South Wales Visiting Professorship Scheme,Australia.
文摘An advanced ceramic cutting tool material Al2O3/TiC/TiN (LTN) is developed by incorporation and dispersion of micro-scale TiC particle and nano-scale TiN particle in alumina matrix. With the optimal dispersing and fabricating technology, this multi-scale and multi-phase nanocomposite ceramic tool material can get both higher flexural strength and fracture toughness than that of A1203/TiC (LZ) ceramic tool material without nano-scale TiN particle, especially the fracture toughness can reach to 7.8 MPa . m^0.5. The nano-scale TiN can lead to the grain fining effect and promote the sintering process to get a higher density. The coexisting transgranular and intergranular fracture mode induced by micro-scale TiC and nano-scale TiN, and the homogeneous and densified microstructure can result in a remarkable strengthening and toughening effect. The cutting performance and wear mechanisms of the advanced multi-scale and multi-phase nanocomposite ceramic cutting tool are researched.
文摘To celebrate the 90th birthday of Professor Mooson Kwauk, who supervised the multi-scale research at this Institute in the last three decades, we dedicate this paper outlining our thoughts on this subject accumulated from our previous studies. In the process of developing, improving and extending the energy- minimization multi-scale (EMMS) method, we have gradually recognized that meso-scales are critical to the understanding of the different kinds of multi-scale structures and systems. It is a common challenge not only for chemical engineering but also for almost all disciplines of science and engineering, due to its importance in bridging micro- and macro-behaviors and in displaying complexity and diversity. It is believed that there may exist a common law behind meso-scales of different problems, possibly even in different fields. Therefore, a breakthrough in the understanding of meso-scales will help materialize a revolutionary progress, with respect to modeling, computation and application.