It is of great significance to reasonably distribute the slung load to each helicopter while considering difference in power consumption,relative position and interaction comprehensively.Therefore,the load distributio...It is of great significance to reasonably distribute the slung load to each helicopter while considering difference in power consumption,relative position and interaction comprehensively.Therefore,the load distribution strategy based on power consumption and robust adaptive game control is proposed in this paper.The study is on a"2-lead"multi-lift system of four tandem heli-copters carrying a load cooperatively.First,based on the hierarchical control,the load distribution problem is divided into two parts:the calculation of expected cable force and the calculation of the anti-disturbance cable force.Then,aimed at minimizing the maximum equivalent power of heli-copter,an optimization problem is set up to calculate the expected cable force.Specially,the agent power model is trained by BP neural network,the safe distance constraint between helicopters is set to 2.5 rotor diameters to reduce aerodynamic interference,and the helicopters with different perfor-mance can be considered by introducing the equivalent power factor into the objective function.Next,considering the difference and interaction between helicopters,the robust adaptive differen-tial game control is proposed to calculate the anti-disturbance cable force.Particularly,to solve the coupled Hamiltonian equations,an adaptive solving method for value function is proposed,and its stability is proved in the sense of Lyapunov.The simulation results indicate that the proposed load distribution method based on power consumption is applicable to the entire flight trajectory even there are differences between helicopters.The game control can consider interaction between heli-copters,can deal with different objective functions,and has strong robustness and small steady-state error.Based on the entire strategy,the cable force can be reasonably allocated so as to resist disturbance and improve the flight performance of the whole system.展开更多
In this paper, the hydro-mechanical behavior and physical properties of mature fine tailings(MFT) under atmospheric drying are investigated through a column study. In the study, evaporation takes place in the developm...In this paper, the hydro-mechanical behavior and physical properties of mature fine tailings(MFT) under atmospheric drying are investigated through a column study. In the study, evaporation takes place in the development of suction in the upper parts of the column and increasing suction leads to higher strength in the tailings. After 5 days, the suction in the first lift is around 17 k Pa in the upper part of the column.When a second lift is added, the first lift initially loses strength but over a 30 days' period, the strength is recovered to its prior value and suction in the second lift reaches 500 k Pa. The vane shear strength values show a substantial increase in the strength of the MFT after 30 days under atmospheric drying and drainage. The 90% strength found in the column exceeds the threshold(5 k Pa). The hydraulic-mechanical properties of the deposited tailings are closely coupled due to several mechanisms, such as evaporation,drainage, self-consolidation, suction and crack development. The findings of this study will provide a better understanding of the placement behavior of multiple lifts of MFT and thus contribute to reclamation design standards and reduce the use of dedicated disposal areas.展开更多
文摘It is of great significance to reasonably distribute the slung load to each helicopter while considering difference in power consumption,relative position and interaction comprehensively.Therefore,the load distribution strategy based on power consumption and robust adaptive game control is proposed in this paper.The study is on a"2-lead"multi-lift system of four tandem heli-copters carrying a load cooperatively.First,based on the hierarchical control,the load distribution problem is divided into two parts:the calculation of expected cable force and the calculation of the anti-disturbance cable force.Then,aimed at minimizing the maximum equivalent power of heli-copter,an optimization problem is set up to calculate the expected cable force.Specially,the agent power model is trained by BP neural network,the safe distance constraint between helicopters is set to 2.5 rotor diameters to reduce aerodynamic interference,and the helicopters with different perfor-mance can be considered by introducing the equivalent power factor into the objective function.Next,considering the difference and interaction between helicopters,the robust adaptive differen-tial game control is proposed to calculate the anti-disturbance cable force.Particularly,to solve the coupled Hamiltonian equations,an adaptive solving method for value function is proposed,and its stability is proved in the sense of Lyapunov.The simulation results indicate that the proposed load distribution method based on power consumption is applicable to the entire flight trajectory even there are differences between helicopters.The game control can consider interaction between heli-copters,can deal with different objective functions,and has strong robustness and small steady-state error.Based on the entire strategy,the cable force can be reasonably allocated so as to resist disturbance and improve the flight performance of the whole system.
基金the University of Ottawa and the National Natural Sciences and Engineering Research Council of Canada(NSERC)for supporting this research
文摘In this paper, the hydro-mechanical behavior and physical properties of mature fine tailings(MFT) under atmospheric drying are investigated through a column study. In the study, evaporation takes place in the development of suction in the upper parts of the column and increasing suction leads to higher strength in the tailings. After 5 days, the suction in the first lift is around 17 k Pa in the upper part of the column.When a second lift is added, the first lift initially loses strength but over a 30 days' period, the strength is recovered to its prior value and suction in the second lift reaches 500 k Pa. The vane shear strength values show a substantial increase in the strength of the MFT after 30 days under atmospheric drying and drainage. The 90% strength found in the column exceeds the threshold(5 k Pa). The hydraulic-mechanical properties of the deposited tailings are closely coupled due to several mechanisms, such as evaporation,drainage, self-consolidation, suction and crack development. The findings of this study will provide a better understanding of the placement behavior of multiple lifts of MFT and thus contribute to reclamation design standards and reduce the use of dedicated disposal areas.