期刊文献+
共找到1篇文章
< 1 >
每页显示 20 50 100
多视野特征表示的灰度图像彩色化方法 被引量:2
1
作者 李洪安 郑峭雪 +3 位作者 马天 张婧 李占利 康宝生 《模式识别与人工智能》 EI CSCD 北大核心 2022年第7期637-648,共12页
图像彩色化是指预测灰度图像的颜色信息,虽然使用深度学习方法可自动地对灰度图像彩色化,但对图像中不同尺度目标的彩色化质量不高,尤其是在对复杂物体和小目标物体彩色化时,存在颜色溢出、误着色和图像颜色不一致的问题.针对上述问题,... 图像彩色化是指预测灰度图像的颜色信息,虽然使用深度学习方法可自动地对灰度图像彩色化,但对图像中不同尺度目标的彩色化质量不高,尤其是在对复杂物体和小目标物体彩色化时,存在颜色溢出、误着色和图像颜色不一致的问题.针对上述问题,文中提出多视野特征表示的灰度图像彩色化方法.首先,设计多视野特征表示模块(Multi-field Feature Represented Block,MFRB),与改进的U-Net结合得到多视野特征表示U-Net.然后,将灰度图像输入U-Net中,并通过与判别器的对抗训练得到彩色图像.最后,利用VGG-19网络在不同尺度上计算图像的感知损失,提高图像彩色化结果的整体一致性.在不同类别的6个数据集上的实验表明,文中方法能有效提高彩色化图像质量,产生颜色更丰富、色调更一致的彩色图像,并在客观评价指标和主观感受上都较优. 展开更多
关键词 图像彩色化 生成对抗网络 多视野特征表示 感知损失
下载PDF
上一页 1 下一页 到第
使用帮助 返回顶部