Paired associative stimulation is a relatively new non-invasive brain stimulation technique that combines transcranial magnetic stimulation and peripheral nerve stimulation. The effects of paired associative stimulati...Paired associative stimulation is a relatively new non-invasive brain stimulation technique that combines transcranial magnetic stimulation and peripheral nerve stimulation. The effects of paired associative stimulation on the excitability of the cerebral cortex can vary according to the time interval between the transcranial magnetic stimulation and peripheral nerve stimulation. We established a model of cerebral ischemia in rats via transient middle cerebral artery occlusion. We administered paired associative stimulation with a frequency of 0.05 Hz 90 times over 4 weeks. We then evaluated spatial learning and memory using the Morris water maze. Changes in the cerebral ultra-structure and synaptic plasticity were assessed via transmission electron microscopy and a 64-channel multi-electrode array. We measured mRNA and protein expression levels of brain-derived neurotrophic factor and N-methyl-D-aspartate receptor 1 in the hippocampus using a real-time polymerase chain reaction and western blot assay. Paired associative stimulation treatment significantly improved learning and memory in rats subjected to cerebral ischemia. The ultra-structures of synapses in the CA1 area of the hippocampus in rats subjected to cerebral ischemia were restored by paired associative stimulation. Long-term potentiation at synapses in the CA3 and CA1 regions of the hippocampus was enhanced as well. The protein and mRNA expression of brain-derived neurotrophic factor and N-methyl-D-aspartate receptor 1 increased after paired associative stimulation treatment. These data indicate that paired associative stimulation can protect cog-nition after cerebral ischemia. The observed effect may be mediated by increases in the mRNA and protein expression of brain-derived neurotrophic factor and N-methyl-D-aspartate receptor 1, and by enhanced synaptic plasticity in the CA1 area of the hippocampus. The animal experiments were approved by the Animal Ethics Committee of Tongji Medical College, Huazhong University of Science & Technology, China(appr展开更多
Recently, non-invasive, real-time and multi-point measurement of neural activities has become possible by using a multi-electrode array (MEA). Another method for multi-point measurement is the fluorescent imaging tech...Recently, non-invasive, real-time and multi-point measurement of neural activities has become possible by using a multi-electrode array (MEA). Another method for multi-point measurement is the fluorescent imaging technique using voltage indicator dyes or calcium indicator dyes. Especially, calcium imaging using fluorescent calcium indicator dyes is often more useful, because they exhibit larger changes in the fluorescence intensity than voltage indicator dyes and their fluorescence changes can be detect easily. Additionally, calcium signals play key roles in the brain function, such as the long-term potentiation (LTP) in the hippocampus, and calcium imaging can be a powerful tool to elucidate the brain function. In this study, we constructed a measurement apparatus combining the MEA system and laser confocal calcium imaging and simultaneously measured electric signals and calcium signals in acute mouse hippocampal slices. The obtained results showed the availability of the present method.展开更多
介绍了在基于工作流的生物信息学软件平台上编写的可视化软件包(neural signal process tools),该软件包提供了比较完整的统计学算法,可实现多通道锋电位信号的并行处理,并将结果有效可视化,为在网络层次上研究神经元的功能和动力学特...介绍了在基于工作流的生物信息学软件平台上编写的可视化软件包(neural signal process tools),该软件包提供了比较完整的统计学算法,可实现多通道锋电位信号的并行处理,并将结果有效可视化,为在网络层次上研究神经元的功能和动力学特性提供了有力的支持。展开更多
An adaptive closed-loop system for spinal cord injury(SCI) repair is designed. It integrates stimulation and recording on 16 pairs of electrodes. Two switches(SAS3 T16/SAS1 T16 X2) fabricated in high-voltage 0.8 μm p...An adaptive closed-loop system for spinal cord injury(SCI) repair is designed. It integrates stimulation and recording on 16 pairs of electrodes. Two switches(SAS3 T16/SAS1 T16 X2) fabricated in high-voltage 0.8 μm process with online re-configurable function are proposed. These two switches are combined with commercial off-the-shelf(COTS) electronics to implement the closed-loop implantable system in compact module. The system includes amplifier for recording neural signals, high-voltage stimulator, power transmission device, central processing module and flexible implantable electrodes. Two customized switches route any electrode to amplifier or stimulator, and nerve stimulation and signal recording are performed through lead wire-driven channels. The entire system is able to operate at up to 28 V, and is a biocompatible package with a volume of 42 mm×35 mm×8 mm. This system solves several problems encountered in implantable devices: low flexibility, negative influence of stimulus artifacts on neural detection and low integration of electrodes.展开更多
基金supported by the National Natural Science Foundation of China,No.81272156(to TCG)
文摘Paired associative stimulation is a relatively new non-invasive brain stimulation technique that combines transcranial magnetic stimulation and peripheral nerve stimulation. The effects of paired associative stimulation on the excitability of the cerebral cortex can vary according to the time interval between the transcranial magnetic stimulation and peripheral nerve stimulation. We established a model of cerebral ischemia in rats via transient middle cerebral artery occlusion. We administered paired associative stimulation with a frequency of 0.05 Hz 90 times over 4 weeks. We then evaluated spatial learning and memory using the Morris water maze. Changes in the cerebral ultra-structure and synaptic plasticity were assessed via transmission electron microscopy and a 64-channel multi-electrode array. We measured mRNA and protein expression levels of brain-derived neurotrophic factor and N-methyl-D-aspartate receptor 1 in the hippocampus using a real-time polymerase chain reaction and western blot assay. Paired associative stimulation treatment significantly improved learning and memory in rats subjected to cerebral ischemia. The ultra-structures of synapses in the CA1 area of the hippocampus in rats subjected to cerebral ischemia were restored by paired associative stimulation. Long-term potentiation at synapses in the CA3 and CA1 regions of the hippocampus was enhanced as well. The protein and mRNA expression of brain-derived neurotrophic factor and N-methyl-D-aspartate receptor 1 increased after paired associative stimulation treatment. These data indicate that paired associative stimulation can protect cog-nition after cerebral ischemia. The observed effect may be mediated by increases in the mRNA and protein expression of brain-derived neurotrophic factor and N-methyl-D-aspartate receptor 1, and by enhanced synaptic plasticity in the CA1 area of the hippocampus. The animal experiments were approved by the Animal Ethics Committee of Tongji Medical College, Huazhong University of Science & Technology, China(appr
文摘Recently, non-invasive, real-time and multi-point measurement of neural activities has become possible by using a multi-electrode array (MEA). Another method for multi-point measurement is the fluorescent imaging technique using voltage indicator dyes or calcium indicator dyes. Especially, calcium imaging using fluorescent calcium indicator dyes is often more useful, because they exhibit larger changes in the fluorescence intensity than voltage indicator dyes and their fluorescence changes can be detect easily. Additionally, calcium signals play key roles in the brain function, such as the long-term potentiation (LTP) in the hippocampus, and calcium imaging can be a powerful tool to elucidate the brain function. In this study, we constructed a measurement apparatus combining the MEA system and laser confocal calcium imaging and simultaneously measured electric signals and calcium signals in acute mouse hippocampal slices. The obtained results showed the availability of the present method.
基金Supported by the National Natural Science Foundation of China(No.61474107)the National Key Technologies R&D Program(No.2016YFC0105604)。
文摘An adaptive closed-loop system for spinal cord injury(SCI) repair is designed. It integrates stimulation and recording on 16 pairs of electrodes. Two switches(SAS3 T16/SAS1 T16 X2) fabricated in high-voltage 0.8 μm process with online re-configurable function are proposed. These two switches are combined with commercial off-the-shelf(COTS) electronics to implement the closed-loop implantable system in compact module. The system includes amplifier for recording neural signals, high-voltage stimulator, power transmission device, central processing module and flexible implantable electrodes. Two customized switches route any electrode to amplifier or stimulator, and nerve stimulation and signal recording are performed through lead wire-driven channels. The entire system is able to operate at up to 28 V, and is a biocompatible package with a volume of 42 mm×35 mm×8 mm. This system solves several problems encountered in implantable devices: low flexibility, negative influence of stimulus artifacts on neural detection and low integration of electrodes.