期刊文献+
共找到10篇文章
< 1 >
每页显示 20 50 100
基于多域特征提取和自适应神经-模糊推理系统的电能质量扰动识别 被引量:6
1
作者 张明 李开成 胡益胜 《电力系统保护与控制》 EI CSCD 北大核心 2010年第24期6-13,共8页
基于多域特征提取(multi-domain feature extraction)和自适应神经-模糊推理系统(Adaptive Neuro-Fuzzy Inference system,ANFIS)提出了电能质量扰动类型识别的一种新方法。基于波形包络阈值线对扰动进行检测;在时域、频域和小波域进行... 基于多域特征提取(multi-domain feature extraction)和自适应神经-模糊推理系统(Adaptive Neuro-Fuzzy Inference system,ANFIS)提出了电能质量扰动类型识别的一种新方法。基于波形包络阈值线对扰动进行检测;在时域、频域和小波域进行多域特征提取,选取扰动信号的基波均方根(RMS)幅值、总谐波畸变率、次谐波幅值和小波包能量熵共同组成输入特征矢量;通过自适应神经-模糊推理系统对电能质量扰动类型进行识别。仿真结果表明,该方法与BP神经网络和最小二乘支持向量机相比平均识别准确率高,对特征不规则的待检电能质量扰动信号具有良好的柔性和适应性。 展开更多
关键词 电能质量 多域特征提取 自适应神经-模糊推理系统 BP神经网络 最小二乘支持向量机
下载PDF
基于UMAP改进的多域特征提取方法及轴承故障诊断
2
作者 尹泽明 王彩年 +1 位作者 王智 毛范海 《组合机床与自动化加工技术》 北大核心 2024年第1期160-163,共4页
针对传统多域特征提取方法占用计算资源过大、分类精度不足等问题,提出了一种基于统一流行逼近与投影算法(UMAP)改进的多域特征提取方法。通过对原始信号进行多域特征采集结合UMAP的全局信息提取能力进行信息融合与低维映射重构特征集;... 针对传统多域特征提取方法占用计算资源过大、分类精度不足等问题,提出了一种基于统一流行逼近与投影算法(UMAP)改进的多域特征提取方法。通过对原始信号进行多域特征采集结合UMAP的全局信息提取能力进行信息融合与低维映射重构特征集;在此基础上将特征集输入到支持向量机中进行模型训练,实现轴承的故障识别与诊断。基于某大学公开的滚动轴承实验数据集对比分析了几种典型的优化算法与传统多域特征提取方法,证明所提方法识别滚动轴承故障状态的成功率为100%,验证了该方法的优越性。 展开更多
关键词 故障诊断 多域特征提取 统一流形逼近与投影 支持向量机
下载PDF
基于多域特征分析与选择的电力数据识别方法 被引量:1
3
作者 洪德华 刘翠玲 +2 位作者 赵林燕 雷沁怡 王海鑫 《水电能源科学》 北大核心 2023年第9期211-215,共5页
为解决电力数据特征挖掘不充分导致识别精度不高的问题,提出一种基于多域特征分析与选择的电力数据识别方法。首先针对现有电力数据特征提取方法存在的不足,提出一种基于经验模态分解(EMD)与Hilbert变换(EMD-Hilbert)的特征提取方法,并... 为解决电力数据特征挖掘不充分导致识别精度不高的问题,提出一种基于多域特征分析与选择的电力数据识别方法。首先针对现有电力数据特征提取方法存在的不足,提出一种基于经验模态分解(EMD)与Hilbert变换(EMD-Hilbert)的特征提取方法,并对电力数据的功率特征和V-I轨迹特征进行量化表征;然后基于随机森林与广义序列后向选择搜索策略相结合的特征选择算法(RF-GSBS)得到最优特征子集,并采用RF算法构建电力数据的识别模型;最后通过仿真算例验证所提方法的有效性和准确性。结果表明,该算法可利用不同特征互补性解决单一特征识别精度不高的问题,并通过特征选择进一步提高学习算法的性能。 展开更多
关键词 电力数据识别 多域特征提取 特征选择 随机森林 序列后向选择
下载PDF
多域特征提取和极限学习机的滚动轴承智能诊断 被引量:3
4
作者 巴鑫宇 张义民 张凯 《机械设计与制造》 北大核心 2022年第9期141-144,148,共5页
针对现实复杂工况下的振动以及噪声问题,提出了基于多域特征提取、Fisher得分和极限学习机(Extreme Learn⁃ing Machine,ELM)的滚动轴承诊断方法。首先,通过多域特征提取方法构造多域特征集,其次利用Fisher得分算法按照多域特征集特征值... 针对现实复杂工况下的振动以及噪声问题,提出了基于多域特征提取、Fisher得分和极限学习机(Extreme Learn⁃ing Machine,ELM)的滚动轴承诊断方法。首先,通过多域特征提取方法构造多域特征集,其次利用Fisher得分算法按照多域特征集特征值的重要性进行排序,选择具有代表性的敏感故障特征,最后,将重新构造的多域特征集输入极限学习机中实现智能诊断。利用美国西储大学轴承试验数据进行分析,为贴近现实工况,在原始振动信号上加50dB的白噪声,结果表明,提出的方法能够有效识别滚动轴承的故障大小和类别,并具有良好的抗噪性。 展开更多
关键词 多域特征提取 Fisher得分算法 极限学习机 故障诊断
下载PDF
基于多域特征提取和决策层融合的人脸识别 被引量:2
5
作者 胥松寿 齐林 高磊 《计算机应用与软件》 CSCD 北大核心 2014年第11期170-174,263,共6页
为了提取人脸图像丰富、有效的互补特征集,建立三种基于空域、频域和u域(分数阶傅立叶域)的特征提取模型,分别为基于局部二元模式(LBP)的空域多分辨率特征提取模型与基于频域和u域混合特征提取模型。在决策层,用加权和的方法对三种模型... 为了提取人脸图像丰富、有效的互补特征集,建立三种基于空域、频域和u域(分数阶傅立叶域)的特征提取模型,分别为基于局部二元模式(LBP)的空域多分辨率特征提取模型与基于频域和u域混合特征提取模型。在决策层,用加权和的方法对三种模型得到的相识度矩阵进行融合得到总的相识度矩阵,用最近邻分类器进行分类得到识别结果。实验表明,该方法能提取出丰富、有效的判别特征,与基于单一特征形式的人脸识别方法相比,识别效果得到了较高的改善。 展开更多
关键词 多域特征提取 局部二元模式 二维分数阶傅立叶变换 决策层融合 人脸识别
下载PDF
基于卷积神经网络联合多域特征提取的干扰识别算法 被引量:15
6
作者 王鹏宇 程郁凡 +1 位作者 徐昊 尚高阳 《信号处理》 CSCD 北大核心 2022年第5期915-925,共11页
干扰识别技术是智能抗干扰通信系统中的关键技术,通过对接收信号中干扰类型的准确判别,可为无线通信系统生成最佳的抗干扰方式提供决策依据。针对无线通信系统中典型压制式干扰的识别问题,本文提出了一种基于卷积神经网络联合多域特征提... 干扰识别技术是智能抗干扰通信系统中的关键技术,通过对接收信号中干扰类型的准确判别,可为无线通信系统生成最佳的抗干扰方式提供决策依据。针对无线通信系统中典型压制式干扰的识别问题,本文提出了一种基于卷积神经网络联合多域特征提取(Convolutional Neural Network-based Joint Multi-Domain Feature Extraction,CNN-JMDFE)的干扰识别算法,通过CNN同时对两种预处理增强的数据对象:时频图像与频域序列提取干扰特征,有效利用了两种数据对象的优势,提升了干扰识别性能。仿真结果表明,在对于包含动态和参数随机的干扰识别场景下,CNN-JMDFE算法在干噪比(Jamming-to-Noise Ratio,JNR)≥-2 dB时可准确识别14种类型的干扰,识别性能明显优于基于时频图像或频域序列单一数据对象的基于卷积神经网络自动特征提取(Automatic Feature Extractionbased Convolutional Neural Network,AFE-CNN)算法;与传统的人工特征提取的深度神经网络(Manual Feature Extraction-based Deep Neural Network,MFE-DNN)相比,本文算法显著提升了在低JNR下分类准确率,增强了干扰特征的抗噪性能;对于复合干扰,本文算法同样可取得良好的分类效果,当JNR≥0 dB时可准确分类10种复合干扰。 展开更多
关键词 卷积神经网络 联合多域特征提取 干扰识别 时频图像 频域序列
下载PDF
基于KNN算法与φ-OTDR系统的高铁声屏障故障识别方法 被引量:1
7
作者 付达靓 姚媛媛 +6 位作者 刘华如 高乾熠 李英 张旭苹 戴程程 邹宁睦 张益昕 《光电子技术》 CAS 2023年第3期261-268,共8页
提出了一种基于K近邻(K-nearest neighbors,KNN)算法和相位敏感光时域反射(Phase-sensitive optical time domain reflectometry,φ-OTDR)系统的高铁声屏障故障识别方法。设计了V字型光缆敷设方式,能够感知声屏障不同高度吸声板在脉动... 提出了一种基于K近邻(K-nearest neighbors,KNN)算法和相位敏感光时域反射(Phase-sensitive optical time domain reflectometry,φ-OTDR)系统的高铁声屏障故障识别方法。设计了V字型光缆敷设方式,能够感知声屏障不同高度吸声板在脉动力冲击下的振动,并利用φ-OTDR系统采集振动信号。对振动信号进行多域特征提取以及K近邻分类后,可以实现对声屏障故障状态识别。实验结果表明,在复杂场景下对于故障点的识别正确率达到了90.9%。该方法为声屏障故障识别提供了一条可行的技术路线,能够减少对专业人员的依赖,对于提升高铁声屏障智能运维水平具有重要意义。 展开更多
关键词 相位敏感光时域反射 声屏障 多域特征提取 K近邻
下载PDF
基于多域判别核典型相关分析的辐射源指纹特征融合方法 被引量:1
8
作者 孙丽婷 王翔 黄知涛 《中国科学:信息科学》 CSCD 北大核心 2023年第1期146-163,共18页
辐射源个体识别(specific emitter identification,SEI)是指通过提取信号中蕴含的有关其发射来源的硬件指纹信息,来实现对特定信号辐射源的精确识别.SEI技术的关键在于指纹特征的提取.相关研究大多侧重于定义和提取新的指纹特征,较少关... 辐射源个体识别(specific emitter identification,SEI)是指通过提取信号中蕴含的有关其发射来源的硬件指纹信息,来实现对特定信号辐射源的精确识别.SEI技术的关键在于指纹特征的提取.相关研究大多侧重于定义和提取新的指纹特征,较少关注对已有特征的综合利用问题.鉴于不同分析域的特征对辐射源指纹的描述存在互补性,本文提出一种基于多域判別核典型相关分析(multi-domain discriminant kernel canonical correlation analysis,MDKCCA)的辐射源指纹多域特征融合方法,充分利用特征的标签信息以及特征间的互补性,在高维空间完成多域特征的降维与融合.以4个特征分析域8种常见指纹特征为依托,在4种不同类型的实测数据集上验证了算法的性能.结果证明,该方法无需人工特征寻优环节,可大幅降低融合特征的维度,对4类目标的准确识别率均达到95%以上,优于最优单一特征,同时优于基于直接级联或基于PCA(principal component analysis)降维变换的简单特征综合方法、基于神经网络的特征综合方法,以及基于判别相关分析(discriminant canonical correlation,DCA)等方法的特征融合方法. 展开更多
关键词 辐射源个体识别 特征融合 多域辐射源指纹特征 典型相关分析 特征提取
原文传递
基于多域特征提取的电力数据离群点检测研究
9
作者 崔钰 张福华 +1 位作者 高少鹏 童乃刚 《电子设计工程》 2024年第20期130-133,139,共5页
为解决传统方法存在随机检测误差导致检测结果不精准的问题,提出基于多域特征提取的电力数据离群点检测研究。该方法从波动性、趋势性和变动性三方面分析6维数据特征,通过多域特征训练对数据进行降维,有效剔除冗余特征。使用K-means算... 为解决传统方法存在随机检测误差导致检测结果不精准的问题,提出基于多域特征提取的电力数据离群点检测研究。该方法从波动性、趋势性和变动性三方面分析6维数据特征,通过多域特征训练对数据进行降维,有效剔除冗余特征。使用K-means算法任意选择对象作为初始聚类中心,根据聚类对象计算各个对象与聚类中心的距离,以此划分离群点区域。计算误差函数,避免离群点分布位置误差影响检测结果,结合网格算法确定6维区间数目和数据分布密度,汇集每一维区间正常点,由此完成离群点检测。实验结果表明,该方法检测到的离群点位置与实际分布位置一致,且只出现2个离群点丢失的情况,其余离群点均能被检测出来,说明应用该方法检测结果精准。 展开更多
关键词 多域特征提取 电力数据 离群点 K-MEANS算法
下载PDF
基于自适应权重的多源部分域适应
10
作者 田青 孙灿宇 储奕 《软件学报》 EI CSCD 北大核心 2024年第4期1703-1716,共14页
作为机器学习的一个新兴领域,多源部分域适应(MSPDA)问题由于其源域自身的复杂性、领域之间的差异性以及目标域自身的无监督性,给相关研究带来了挑战,以致目前鲜有相关工作被提出.在该场景下,多个源域中的无关类样本在域适应过程中会造... 作为机器学习的一个新兴领域,多源部分域适应(MSPDA)问题由于其源域自身的复杂性、领域之间的差异性以及目标域自身的无监督性,给相关研究带来了挑战,以致目前鲜有相关工作被提出.在该场景下,多个源域中的无关类样本在域适应过程中会造成较大的累积误差和负迁移.此外,现有多源域适应方法大多未考虑不同源域对目标域任务的贡献度不同.因此,提出基于自适应权重的多源部分域适应方法(AW-MSPDA).首先,构建了多样性特征提取器以有效利用源域的先验知识;同时,设计了多层次分布对齐策略从不同层面消除了分布差异,促进了正迁移;此外,为量化不同源域贡献度以及过滤源域无关类样本,利用相似性度量以及伪标签加权方式构建自适应权重;最后,通过大量实验验证了所提出AW-MSPDA算法的泛化性以及优越性. 展开更多
关键词 多源部分域适应 负迁移 多样性特征提取 多层次分布对齐 自适应权重
下载PDF
上一页 1 下一页 到第
使用帮助 返回顶部