Recently, sequence anomaly detection has been widely used in many fields. Sequence data in these fields are usually multi-dimensional over the data stream. It is a challenge to design an anomaly detection method for a...Recently, sequence anomaly detection has been widely used in many fields. Sequence data in these fields are usually multi-dimensional over the data stream. It is a challenge to design an anomaly detection method for a multi-dimensional sequence over the data stream to satisfy the requirements of accuracy and high speed. It is because:(1) Redundant dimensions in sequence data and large state space lead to a poor ability for sequence modeling;(2) Anomaly detection cannot adapt to the high-speed nature of the data stream, especially when concept drift occurs, and it will reduce the detection rate. On one hand, most existing methods of sequence anomaly detection focus on the single-dimension sequence. On the other hand, some studies concerning multi-dimensional sequence concentrate mainly on the static database rather than the data stream. To improve the performance of anomaly detection for a multi-dimensional sequence over the data stream, we propose a novel unsupervised fast and accurate anomaly detection(FAAD) method which includes three algorithms. First, a method called "information calculation and minimum spanning tree cluster" is adopted to reduce redundant dimensions. Second, to speed up model construction and ensure the detection rate for the sequence over the data stream, we propose a method called"random sampling and subsequence partitioning based on the index probabilistic suffix tree." Last, the method called "anomaly buffer based on model dynamic adjustment" dramatically reduces the effects of concept drift in the data stream. FAAD is implemented on the streaming platform Storm to detect multi-dimensional log audit data.Compared with the existing anomaly detection methods, FAAD has a good performance in detection rate and speed without being affected by concept drift.展开更多
The distance-based outlier is a widely used definition of outlier. A point is distinguished as an outlier on the basis of the distances to its nearest neighbors. In this paper, to solve the problem of outlier computin...The distance-based outlier is a widely used definition of outlier. A point is distinguished as an outlier on the basis of the distances to its nearest neighbors. In this paper, to solve the problem of outlier computing in distributed environments, DBOZ, a distributed algorithm for distance-based outlier detection using Z-curve hierarchical tree (ZH-tree) is proposed. First, we propose a new index, ZH-tree, to effectively manage the data in a distributed environment. ZH-tree has two desirable advantages, including clustering property to help search the neighbors of a point, and hierarchical structure to support space pruning. We also design a bottom-up approach to build ZH-tree in parallel, whose time complexity is linear to the number of dimensions and the size of dataset. Second, DBOZ is proposed to compute outliers in distributed environments. It consists of two stages. 1) To avoid calculating the exact nearest neighbors of all the points, we design a greedy method and a new ZH-tree based k-nearest neighbor searching algorithm (ZHkNN for short) to obtain a threshold LW. 2) We propose a filter-and-refine approach, which first filters out the unpromising points using LW, and then outputs the final outliers through refining the remaining points. At last, the efficiency and the effectiveness of ZH-tree and DBOZ are testified through a series of experiments.展开更多
Outlier detection is an important task in data mining. In fact, it is difficult to find the clustering centers in some sophisticated multidimensional datasets and to measure the deviation degree of each potential outl...Outlier detection is an important task in data mining. In fact, it is difficult to find the clustering centers in some sophisticated multidimensional datasets and to measure the deviation degree of each potential outlier. In this work, an effective outlier detection method based on multi-dimensional clustering and local density(ODBMCLD) is proposed. ODBMCLD firstly identifies the center objects by the local density peak of data objects, and clusters the whole dataset based on the center objects. Then, outlier objects belonging to different clusters will be marked as candidates of abnormal data. Finally, the top N points among these abnormal candidates are chosen as final anomaly objects with high outlier factors. The feasibility and effectiveness of the method are verified by experiments.展开更多
基金Project supported by the National Key R&D Program of China(No.2016YFB1000101)the National Natural Science Foundation of China(Nos.61379052 and 61502513)+1 种基金the Natural Science Foundation for Distinguished Young Scholars of Hunan Province,China(No.14JJ1026)the Specialized Research Fund for the Doctoral Program of Higher Education,China(No.20124307110015)
文摘Recently, sequence anomaly detection has been widely used in many fields. Sequence data in these fields are usually multi-dimensional over the data stream. It is a challenge to design an anomaly detection method for a multi-dimensional sequence over the data stream to satisfy the requirements of accuracy and high speed. It is because:(1) Redundant dimensions in sequence data and large state space lead to a poor ability for sequence modeling;(2) Anomaly detection cannot adapt to the high-speed nature of the data stream, especially when concept drift occurs, and it will reduce the detection rate. On one hand, most existing methods of sequence anomaly detection focus on the single-dimension sequence. On the other hand, some studies concerning multi-dimensional sequence concentrate mainly on the static database rather than the data stream. To improve the performance of anomaly detection for a multi-dimensional sequence over the data stream, we propose a novel unsupervised fast and accurate anomaly detection(FAAD) method which includes three algorithms. First, a method called "information calculation and minimum spanning tree cluster" is adopted to reduce redundant dimensions. Second, to speed up model construction and ensure the detection rate for the sequence over the data stream, we propose a method called"random sampling and subsequence partitioning based on the index probabilistic suffix tree." Last, the method called "anomaly buffer based on model dynamic adjustment" dramatically reduces the effects of concept drift in the data stream. FAAD is implemented on the streaming platform Storm to detect multi-dimensional log audit data.Compared with the existing anomaly detection methods, FAAD has a good performance in detection rate and speed without being affected by concept drift.
基金This work was supported by the National Basic Research 973 Program of China under Grant No. 2012CB316201, the National Natural Science Foundation of China under Grant Nos. 61033007 and 61472070, and the Fundamental Research Funds for the Central Universities of China under Grant No. N120816001.
文摘The distance-based outlier is a widely used definition of outlier. A point is distinguished as an outlier on the basis of the distances to its nearest neighbors. In this paper, to solve the problem of outlier computing in distributed environments, DBOZ, a distributed algorithm for distance-based outlier detection using Z-curve hierarchical tree (ZH-tree) is proposed. First, we propose a new index, ZH-tree, to effectively manage the data in a distributed environment. ZH-tree has two desirable advantages, including clustering property to help search the neighbors of a point, and hierarchical structure to support space pruning. We also design a bottom-up approach to build ZH-tree in parallel, whose time complexity is linear to the number of dimensions and the size of dataset. Second, DBOZ is proposed to compute outliers in distributed environments. It consists of two stages. 1) To avoid calculating the exact nearest neighbors of all the points, we design a greedy method and a new ZH-tree based k-nearest neighbor searching algorithm (ZHkNN for short) to obtain a threshold LW. 2) We propose a filter-and-refine approach, which first filters out the unpromising points using LW, and then outputs the final outliers through refining the remaining points. At last, the efficiency and the effectiveness of ZH-tree and DBOZ are testified through a series of experiments.
基金Project(61362021)supported by the National Natural Science Foundation of ChinaProject(2016GXNSFAA380149)supported by Natural Science Foundation of Guangxi Province,China+1 种基金Projects(2016YJCXB02,2017YJCX34)supported by Innovation Project of GUET Graduate Education,ChinaProject(2011KF11)supported by the Key Laboratory of Cognitive Radio and Information Processing,Ministry of Education,China
文摘Outlier detection is an important task in data mining. In fact, it is difficult to find the clustering centers in some sophisticated multidimensional datasets and to measure the deviation degree of each potential outlier. In this work, an effective outlier detection method based on multi-dimensional clustering and local density(ODBMCLD) is proposed. ODBMCLD firstly identifies the center objects by the local density peak of data objects, and clusters the whole dataset based on the center objects. Then, outlier objects belonging to different clusters will be marked as candidates of abnormal data. Finally, the top N points among these abnormal candidates are chosen as final anomaly objects with high outlier factors. The feasibility and effectiveness of the method are verified by experiments.