Plant phenomics has the potential to accelerate progress in understanding gene functions and environmental responses. Progress has been made in automating high-throughput plant phenotyping. However, few studies have i...Plant phenomics has the potential to accelerate progress in understanding gene functions and environmental responses. Progress has been made in automating high-throughput plant phenotyping. However, few studies have investigated automated rice panicle counting. This paper describes a novel method for automatically and nonintrusively determining rice panicle numbers during the full heading stage by analyzing color images of rice plants taken from multiple angles. Pot-grown rice plants were transferred via an industrial conveyer to an imaging chamber. Color images from different angles were automatically acquired as a turntable rotated the plant. The images were then analyzed and the panicle number of each plant was determined. The image analysis pipeline consisted of extracting the i2 plane from the original color image, segmenting the image, discriminating the panicles from the rest of the plant using an artificial neural network, and calculating the panicle number in the current image. The panicle number of the plant was taken as the maximum of the panicle numbers extracted from all 12 multi-angle images. A total of 105 rice plants during the full heading stage were examined to test the performance of the method. The mean absolute error of the manual and automatic count was 0.5, with 95.3% of the plants yielding absolute errors within ± 1. The method will be useful for evaluating rice panicles and will serve as an important supplementary method for high-throughput rice phenotyping.展开更多
The Multi-angle imaging spectroradiometer(MISR) land-surface(LS) bidirectional reflectance factor(BRF) product(MILS_BRF) has unique semi-simultaneous multi-angle sampling and global coverage. However, unlike on-satell...The Multi-angle imaging spectroradiometer(MISR) land-surface(LS) bidirectional reflectance factor(BRF) product(MILS_BRF) has unique semi-simultaneous multi-angle sampling and global coverage. However, unlike on-satellite observations, the spatio-temporal characteristics of MILS_BRF data have rarely been explicitly and comprehensively analysed. Results from 5-yr(2011–2015) of MILS_BRF dataset from a typical region in central Northeast Asia as the study area showed that the monthly area coverage as well as MILS_BRF data quantity varies significantly, from the highest in October(99.05%) through median in June/July(78.09%/75.21%) to lowest in January(18.97%), and a large data-vacant area exists in the study area during four consecutive winter months(December through March). The data-vacant area is mainly composed of crop lands and cropland/natural vegetation mosaic. The amount of data within the principal plane(PP)±30°(nPP) or cross PP ±30°(nCP), varies intra-annually with significant differences from different view zeniths or forward/backward scattering directions. For example, multiple off-nadir cameras have nPP but no nCP data for up to six months(September through February), with the opposite occurring in June and July. This study provides explicit and comprehensive information about the spatio-temporal characteristics of product coverage and observation geometry of MILS_BRF in the study area. Results provide required user reference information for MILS_BRF to evaluate performance of BRDF models or to compare with other satellite-derived BRF or albedo products. Comparing this final product to on-satellite observations, what was found here reveals a new perspective on product spatial coverage and observation geometry for multi-angle remote sensing.展开更多
基金supported by grants from the National High Technology Research and Development Program of China(2013AA102403)the National Natural Science Foundation of China (30921091, 31200274)+1 种基金the Program for New Century Excellent Talents in University (NCET-10-0386)the Fundamental Research Funds for the Central Universities (2013PY034, 2014BQ010)
文摘Plant phenomics has the potential to accelerate progress in understanding gene functions and environmental responses. Progress has been made in automating high-throughput plant phenotyping. However, few studies have investigated automated rice panicle counting. This paper describes a novel method for automatically and nonintrusively determining rice panicle numbers during the full heading stage by analyzing color images of rice plants taken from multiple angles. Pot-grown rice plants were transferred via an industrial conveyer to an imaging chamber. Color images from different angles were automatically acquired as a turntable rotated the plant. The images were then analyzed and the panicle number of each plant was determined. The image analysis pipeline consisted of extracting the i2 plane from the original color image, segmenting the image, discriminating the panicles from the rest of the plant using an artificial neural network, and calculating the panicle number in the current image. The panicle number of the plant was taken as the maximum of the panicle numbers extracted from all 12 multi-angle images. A total of 105 rice plants during the full heading stage were examined to test the performance of the method. The mean absolute error of the manual and automatic count was 0.5, with 95.3% of the plants yielding absolute errors within ± 1. The method will be useful for evaluating rice panicles and will serve as an important supplementary method for high-throughput rice phenotyping.
基金Under the auspices the Fundamental Research Funds for the Central Universities,China(No.2017TD-26)the Plan for Changbai Mountain Scholars of Jilin Province,China(No.JJLZ[2015]54)
文摘The Multi-angle imaging spectroradiometer(MISR) land-surface(LS) bidirectional reflectance factor(BRF) product(MILS_BRF) has unique semi-simultaneous multi-angle sampling and global coverage. However, unlike on-satellite observations, the spatio-temporal characteristics of MILS_BRF data have rarely been explicitly and comprehensively analysed. Results from 5-yr(2011–2015) of MILS_BRF dataset from a typical region in central Northeast Asia as the study area showed that the monthly area coverage as well as MILS_BRF data quantity varies significantly, from the highest in October(99.05%) through median in June/July(78.09%/75.21%) to lowest in January(18.97%), and a large data-vacant area exists in the study area during four consecutive winter months(December through March). The data-vacant area is mainly composed of crop lands and cropland/natural vegetation mosaic. The amount of data within the principal plane(PP)±30°(nPP) or cross PP ±30°(nCP), varies intra-annually with significant differences from different view zeniths or forward/backward scattering directions. For example, multiple off-nadir cameras have nPP but no nCP data for up to six months(September through February), with the opposite occurring in June and July. This study provides explicit and comprehensive information about the spatio-temporal characteristics of product coverage and observation geometry of MILS_BRF in the study area. Results provide required user reference information for MILS_BRF to evaluate performance of BRDF models or to compare with other satellite-derived BRF or albedo products. Comparing this final product to on-satellite observations, what was found here reveals a new perspective on product spatial coverage and observation geometry for multi-angle remote sensing.