Design for manufacturing, design for assembly, and, in general, design for X, are methods helping an effective generation of industrial products. In parallel with the development of these methods, the research about u...Design for manufacturing, design for assembly, and, in general, design for X, are methods helping an effective generation of industrial products. In parallel with the development of these methods, the research about usability engineering has generated many important results, both from the design, and the evaluation and testing points of view. The research described in this paper aims at evaluating the feasibility of the integration of two new usability methods, the design for innovative usability - DFIU -, and the integrated method for usability evaluation and testing - IMUET -, in an existing design for X named design guidelines collaborative framework - DGLs-CF -. Indeed, the DGLs-CF is a design for multi-X method, given that it covers both the manufacturing and the verification phases of the industrial product lifecycle. All these methods are currently under development by the author’s research group. To evaluate this feasibility, the first task of the research aims at describing and classifying the components of the three methods. Next, these components are semantically related to each other. Finally, the last activity verifies the compatibility between the components of the two usability methods and the data structures of the DGLs-CF to check the feasibility from the implementation point of view. The result of this research will consist of precise indications both for the development of a design for multi-X collaborative framework covering homogeneously the design, manufacturing, verification, and use phases of the industrial product lifecycle, and to be used as a reference for researchers interested in considering the integration of usability issues in their design tools, methods, and processes.展开更多
The objective of this study is to improve the performance of semi-empirical radar backscatter models, which are mainly used in microwave remote sensing (Oh 1992, Oh 2004 and Dubois). The study is based on satellite an...The objective of this study is to improve the performance of semi-empirical radar backscatter models, which are mainly used in microwave remote sensing (Oh 1992, Oh 2004 and Dubois). The study is based on satellite and ground data collected on bare soil surfaces during the Multispectral Crop Monitoring experimental campaign of the CESBIO laboratory in 2010 over an agricultural region in southwestern France. The dataset covers a wide range of soil (viewing top soil moisture, surface roughness and texture) and satellite (at different frequencies: X-, C- and L-bands, and different incidence angles: 24.3° to 53.3°) configurations. The proposed methodology consists in identifying and correcting the residues of the models, depending on the surface properties (roughness, moisture, texture) and/or sensor characteristics (frequency, incidence angle). Finally, one model has been retained for each frequency domain. Results show that the enhancements of the models significantly increase the simulation performances. The coefficient of correlation increases of 23% in mean and the simulation errors (RMSE) are reduced to below 2 dB (at the X and C-bands) and to 1 dB at the L-band, compared to the initial models. At the X- and C-bands, the best performances of the modified models are provided by Dubois, whereas Oh 2004 is more suitable for the L-band (r is equal to 0.69, 0.65 and 0.85). Moreover, the modified models of Oh 1992 and 2004 and Dubois, developed in this study, offer a wider domain of validity than the initial formalism and increase the capabilities of retrieving the backscattering signal in view of applications of such approaches to stronglycontrasted agricultural surface states.展开更多
双能X射线骨密度仪(Dual Energy X-ray Absorptiometry,DEXA)测量获得的骨密度值是用于骨质疏松症诊断的国际金标准,但不同品牌DEXA测量结果的一致性和骨密度值的准确性及溯源方法尚未获得足够关注。为统一DEXA的测量结果,同时为骨质疏...双能X射线骨密度仪(Dual Energy X-ray Absorptiometry,DEXA)测量获得的骨密度值是用于骨质疏松症诊断的国际金标准,但不同品牌DEXA测量结果的一致性和骨密度值的准确性及溯源方法尚未获得足够关注。为统一DEXA的测量结果,同时为骨质疏松症临床诊断结果互认提供技术支持,本文拟设计并搭建一套多能量X射线骨密度模体校准装置,研究DEXA骨密度模体计量检测和溯源方法,解决DEXA测量骨密度的量值统一和溯源问题。目前,该校准装置已完成设计与加工,经试验验证其辐射剂量等稳定性指标优于1%。展开更多
This paper analyzes the effect of subgroup size on the x-bar chart characteristics using sample influx (SIF) into forensic science laboratory (FSL). The characteristics studied include changes in out-or-control points...This paper analyzes the effect of subgroup size on the x-bar chart characteristics using sample influx (SIF) into forensic science laboratory (FSL). The characteristics studied include changes in out-or-control points (OCP), upper control limit UCLx, and zonal demarcations. Multi-rules were used to identify the number of out-of-control-points, Nocp as violations using five control chart rules applied separately. A sensitivity analysis on the Nocp was applied for subgroup size, k, and number of sigma above the mean value to determine the upper control limit, UCLx. A computer code was implemented using a FORTRAN code to create x-bar control-charts and capture OCP and other control-chart characteristics with increasing k from 2 to 25. For each value of k, a complete series of average values, Q(p), of specific length, Nsg, was created from which statistical analysis was conducted and compared to the original SIF data, S(t). The variation of number of out-of-control points or violations, Nocp, for different control-charts rules with increasing k was determined to follow a decaying exponential function, Nocp = Ae–α, for which, the goodness of fit was established, and the R2 value approached unity for Rule #4 and #5 only. The goodness of fit was established to be the new criteria for rational subgroup-size range, for Rules #5 and #4 only, which involve a count of 6 consecutive points decreasing and 8 consecutive points above the selected control limit (σ/3 above the grand mean), respectively. Using this criterion, the rational subgroup range was established to be 4 ≤ k ≤ 20 for the two x-bar control chart rules.展开更多
文摘Design for manufacturing, design for assembly, and, in general, design for X, are methods helping an effective generation of industrial products. In parallel with the development of these methods, the research about usability engineering has generated many important results, both from the design, and the evaluation and testing points of view. The research described in this paper aims at evaluating the feasibility of the integration of two new usability methods, the design for innovative usability - DFIU -, and the integrated method for usability evaluation and testing - IMUET -, in an existing design for X named design guidelines collaborative framework - DGLs-CF -. Indeed, the DGLs-CF is a design for multi-X method, given that it covers both the manufacturing and the verification phases of the industrial product lifecycle. All these methods are currently under development by the author’s research group. To evaluate this feasibility, the first task of the research aims at describing and classifying the components of the three methods. Next, these components are semantically related to each other. Finally, the last activity verifies the compatibility between the components of the two usability methods and the data structures of the DGLs-CF to check the feasibility from the implementation point of view. The result of this research will consist of precise indications both for the development of a design for multi-X collaborative framework covering homogeneously the design, manufacturing, verification, and use phases of the industrial product lifecycle, and to be used as a reference for researchers interested in considering the integration of usability issues in their design tools, methods, and processes.
文摘The objective of this study is to improve the performance of semi-empirical radar backscatter models, which are mainly used in microwave remote sensing (Oh 1992, Oh 2004 and Dubois). The study is based on satellite and ground data collected on bare soil surfaces during the Multispectral Crop Monitoring experimental campaign of the CESBIO laboratory in 2010 over an agricultural region in southwestern France. The dataset covers a wide range of soil (viewing top soil moisture, surface roughness and texture) and satellite (at different frequencies: X-, C- and L-bands, and different incidence angles: 24.3° to 53.3°) configurations. The proposed methodology consists in identifying and correcting the residues of the models, depending on the surface properties (roughness, moisture, texture) and/or sensor characteristics (frequency, incidence angle). Finally, one model has been retained for each frequency domain. Results show that the enhancements of the models significantly increase the simulation performances. The coefficient of correlation increases of 23% in mean and the simulation errors (RMSE) are reduced to below 2 dB (at the X and C-bands) and to 1 dB at the L-band, compared to the initial models. At the X- and C-bands, the best performances of the modified models are provided by Dubois, whereas Oh 2004 is more suitable for the L-band (r is equal to 0.69, 0.65 and 0.85). Moreover, the modified models of Oh 1992 and 2004 and Dubois, developed in this study, offer a wider domain of validity than the initial formalism and increase the capabilities of retrieving the backscattering signal in view of applications of such approaches to stronglycontrasted agricultural surface states.
文摘双能X射线骨密度仪(Dual Energy X-ray Absorptiometry,DEXA)测量获得的骨密度值是用于骨质疏松症诊断的国际金标准,但不同品牌DEXA测量结果的一致性和骨密度值的准确性及溯源方法尚未获得足够关注。为统一DEXA的测量结果,同时为骨质疏松症临床诊断结果互认提供技术支持,本文拟设计并搭建一套多能量X射线骨密度模体校准装置,研究DEXA骨密度模体计量检测和溯源方法,解决DEXA测量骨密度的量值统一和溯源问题。目前,该校准装置已完成设计与加工,经试验验证其辐射剂量等稳定性指标优于1%。
文摘This paper analyzes the effect of subgroup size on the x-bar chart characteristics using sample influx (SIF) into forensic science laboratory (FSL). The characteristics studied include changes in out-or-control points (OCP), upper control limit UCLx, and zonal demarcations. Multi-rules were used to identify the number of out-of-control-points, Nocp as violations using five control chart rules applied separately. A sensitivity analysis on the Nocp was applied for subgroup size, k, and number of sigma above the mean value to determine the upper control limit, UCLx. A computer code was implemented using a FORTRAN code to create x-bar control-charts and capture OCP and other control-chart characteristics with increasing k from 2 to 25. For each value of k, a complete series of average values, Q(p), of specific length, Nsg, was created from which statistical analysis was conducted and compared to the original SIF data, S(t). The variation of number of out-of-control points or violations, Nocp, for different control-charts rules with increasing k was determined to follow a decaying exponential function, Nocp = Ae–α, for which, the goodness of fit was established, and the R2 value approached unity for Rule #4 and #5 only. The goodness of fit was established to be the new criteria for rational subgroup-size range, for Rules #5 and #4 only, which involve a count of 6 consecutive points decreasing and 8 consecutive points above the selected control limit (σ/3 above the grand mean), respectively. Using this criterion, the rational subgroup range was established to be 4 ≤ k ≤ 20 for the two x-bar control chart rules.