期刊文献+
共找到598篇文章
< 1 2 30 >
每页显示 20 50 100
基于深度结构多任务学习的园区型综合能源系统多元负荷预测 被引量:87
1
作者 史佳琪 谭涛 +2 位作者 郭经 刘阳 张建华 《电网技术》 EI CSCD 北大核心 2018年第3期698-706,共9页
为进一步减轻环境压力,提高能源利用效率,综合能源系统已经成为了能源转型过程中一种重要的能源利用方式,电、热、气系统之间的联系更加的紧密。精确的能源需求预测将成为综合能源系统经济调度和优化运行中重要的一环。提出了基于深度... 为进一步减轻环境压力,提高能源利用效率,综合能源系统已经成为了能源转型过程中一种重要的能源利用方式,电、热、气系统之间的联系更加的紧密。精确的能源需求预测将成为综合能源系统经济调度和优化运行中重要的一环。提出了基于深度结构多任务学习的短期电、热、气负荷联合预测方法。首先介绍了底层深度置信网络和顶层多任务回归的深度模型结构,其中深度置信网络作为无监督学习方法提取了抽象高级特征,多任务回归层作为有监督学习方法输出预测结果;其次建立含离线训练和在线预测的多元负荷预测系统,分析天气信息、历史信息、日历信息及经济数据的输入属性,提出验证模型预测精度的指标;最后,采用某综合能源系统的实际数据对算法的有效性进行了验证,结果显示深度学习和多任务学习在能源需求预测方面有较好的应用效果。 展开更多
关键词 综合能源系统 多元负荷预测 深度学习 多任务学习
下载PDF
基于LSTM和多任务学习的综合能源系统多元负荷预测 被引量:79
2
作者 孙庆凯 王小君 +3 位作者 张义志 张放 张沛 高文忠 《电力系统自动化》 EI CSCD 北大核心 2021年第5期63-70,共8页
随着综合能源利用技术的不断发展与用户用能需求的多元化,现有单一负荷预测方法难以反映多元负荷间的耦合特性,精确的多元负荷预测将成为综合能源系统优化调度和经济运行的首要前提。基于此,提出一种以长短时记忆神经网络作为共享层的... 随着综合能源利用技术的不断发展与用户用能需求的多元化,现有单一负荷预测方法难以反映多元负荷间的耦合特性,精确的多元负荷预测将成为综合能源系统优化调度和经济运行的首要前提。基于此,提出一种以长短时记忆神经网络作为共享层的多任务学习负荷预测方法,经由共享层模拟多元负荷间的耦合特性,进而达到提升预测精度的目的。首先,以"硬共享机制+长短时记忆共享层"方式构建多任务学习负荷预测模型,利用共享机制学习不同子任务提供的耦合信息。其次,通过神经网络可解释性技术对离线训练结果进行可视化解释,证实了所构建模型能够利用子任务提供的耦合信息来提高预测精度。最后,与传统模型进行对比分析,结果表明所构建模型在预测精度和时间上具有更好的应用效果。 展开更多
关键词 综合能源系统 多元负荷预测 多任务学习 长短时记忆神经网络
下载PDF
基于ResNet-LSTM网络和注意力机制的综合能源系统多元负荷预测 被引量:51
3
作者 王琛 王颖 +2 位作者 郑涛 戴则梅 张凯锋 《电工技术学报》 EI CSCD 北大核心 2022年第7期1789-1799,共11页
综合能源系统中多种负荷之间可能存在复杂的、较强的相互耦合关系。相对于对各类负荷进行单一独立的预测,直接开展多元负荷预测能够进一步挖掘负荷之间的内在联系,提高预测准确度。该文提出一种基于ResNet-LSTM网络和注意力机制的多任... 综合能源系统中多种负荷之间可能存在复杂的、较强的相互耦合关系。相对于对各类负荷进行单一独立的预测,直接开展多元负荷预测能够进一步挖掘负荷之间的内在联系,提高预测准确度。该文提出一种基于ResNet-LSTM网络和注意力机制的多任务学习模型,用于拟合多能负荷之间的空间耦合关系和时间耦合关系。首先,采用多层ResNet作为多能负荷数据的特征提取单元,挖掘多能之间的空间耦合交互特征;然后,通过双向长短时记忆网络残差结构进一步挖掘多能负荷数据的时序特征;接着,使用注意力机制实现多任务对于共享特征不同程度的关注,体现不同子任务对共享特征的差异化选择,实现多元负荷的联合预测;最后,结合亚利桑那州立大学CampusMetabolism系统的多能负荷数据,与其他预测模型进行对比分析,结果表明所提出的多元负荷预测方法具有更高的预测精度。 展开更多
关键词 注意力机制 残差网络 长短时记忆网络 多元负荷预测 多任务学习
下载PDF
基于笔画ELMo和多任务学习的中文电子病历命名实体识别研究 被引量:46
4
作者 罗凌 杨志豪 +2 位作者 宋雅文 李楠 林鸿飞 《计算机学报》 EI CSCD 北大核心 2020年第10期1943-1957,共15页
近年来,电子病历文本数据不断增长,这为医学研究提供了丰富的知识来源.结合领域需求,采用有效的文本挖掘技术从电子病历文本中自动快速、准确地获取医疗知识,将对医疗健康领域的研究产生极大的推动作用.中文临床电子病历命名实体识别作... 近年来,电子病历文本数据不断增长,这为医学研究提供了丰富的知识来源.结合领域需求,采用有效的文本挖掘技术从电子病历文本中自动快速、准确地获取医疗知识,将对医疗健康领域的研究产生极大的推动作用.中文临床电子病历命名实体识别作为中文医学信息抽取的基本任务,已经受到了广泛关注.目前大多数中文电子病历实体识别工作都是在传统通用的文本表示向量基础上,通过特征工程来提升模型在医疗领域上的性能,缺乏适合中文生物医学特定领域的预训练表示向量.此外,目前现存的中文电子病历标注数据十分稀缺,标注电子病历实体需要具备专业的医学背景知识,且耗时耗力.针对这些问题,本文提出了一种基于笔画ELMo和多任务学习的中文电子病历实体识别方法.首先以笔画序列为输入对ELMo表示学习方法进行改进,利用海量无标注的中文生物医学文本学习上下文相关且包含汉字内部结构信息的笔画ELMo向量,然后构建基于多任务学习的神经网络模型来充分利用现存数据提升模型性能.此外,本文还系统地比较了实体识别常用额外特征(包括词向量、词典和部首特征)以及主流神经网络模型(包括CNN、BiLSTM、CNN-CRF和BiLSTM-CRF模型)在中文电子病历实体识别任务上的性能.实验结果表明,在该任务上BiLSTM-CRF模型获得了比其它模型更好的结果,常用额外特征中词典特征最为有效.相比其它现存方法,本文提出的基于笔画ELMo和多任务学习的神经网络模型在CCKS17和CCKS18 CNER数据集上都获得了更好的结果,F值分别为91.75%和90.05%. 展开更多
关键词 笔画ELMo 多任务学习 神经网络 实体识别 中文电子病历
下载PDF
Multi-view Clustering: A Survey 被引量:39
5
作者 Yan Yang Hao Wang 《Big Data Mining and Analytics》 2018年第2期83-107,共25页
In the big data era, the data are generated from different sources or observed from different views. These data are referred to as multi-view data. Unleashing the power of knowledge in multi-view data is very importan... In the big data era, the data are generated from different sources or observed from different views. These data are referred to as multi-view data. Unleashing the power of knowledge in multi-view data is very important in big data mining and analysis. This calls for advanced techniques that consider the diversity of different views,while fusing these data. Multi-view Clustering(MvC) has attracted increasing attention in recent years by aiming to exploit complementary and consensus information across multiple views. This paper summarizes a large number of multi-view clustering algorithms, provides a taxonomy according to the mechanisms and principles involved, and classifies these algorithms into five categories, namely, co-training style algorithms, multi-kernel learning, multiview graph clustering, multi-view subspace clustering, and multi-task multi-view clustering. Therein, multi-view graph clustering is further categorized as graph-based, network-based, and spectral-based methods. Multi-view subspace clustering is further divided into subspace learning-based, and non-negative matrix factorization-based methods. This paper does not only introduce the mechanisms for each category of methods, but also gives a few examples for how these techniques are used. In addition, it lists some publically available multi-view datasets.Overall, this paper serves as an introductory text and survey for multi-view clustering. 展开更多
关键词 multi-VIEW CLUSTERING CO-TRAINING multi-kernel learning graph CLUSTERING SUBSPACE CLUSTERING SUBSPACE learning non-negative matrix factorization multi-task learning
原文传递
基于多任务学习的中文事件抽取联合模型 被引量:43
6
作者 贺瑞芳 段绍杨 《软件学报》 EI CSCD 北大核心 2019年第4期1015-1030,共16页
事件抽取旨在从非结构化的文本中提取人们感兴趣的信息,并以结构化的形式呈现给用户.当前,大多数中文事件抽取系统采用连续的管道模型,即:先识别事件触发词,后识别事件元素.其容易产生级联错误,且处于下游的任务无法将信息反馈至上游任... 事件抽取旨在从非结构化的文本中提取人们感兴趣的信息,并以结构化的形式呈现给用户.当前,大多数中文事件抽取系统采用连续的管道模型,即:先识别事件触发词,后识别事件元素.其容易产生级联错误,且处于下游的任务无法将信息反馈至上游任务,辅助上游任务的识别.将事件抽取看作序列标注任务,构建了基于CRF多任务学习的中文事件抽取联合模型.针对仅基于CRF的事件抽取联合模型的缺陷进行了两个扩展:首先,采用分类训练策略解决联合模型中事件元素的多标签问题(即:当一个事件提及中包含多个事件时,同一个实体往往会在不同的事件中扮演不同的角色).其次,由于处于同一事件大类下的事件子类,其事件元素存在高度的相互关联性.为此,提出采用多任务学习方法对各事件子类进行互增强的联合学习,进而有效缓解分类训练后的语料稀疏问题.在ACE2005中文语料上的实验证明了该方法的有效性. 展开更多
关键词 多任务学习 条件随机场(CRF) 事件抽取
下载PDF
多任务学习 被引量:33
7
作者 张钰 刘建伟 左信 《计算机学报》 EI CSCD 北大核心 2020年第7期1340-1378,共39页
随着图像处理,语音识别等人工智能技术的发展,很多学习方法尤其是采用深度学习框架的方法取得了优异的性能,在精度和速度方面有了很大的提升,但随之带来的问题也很明显,这些学习方法如果要获得稳定的学习效果,往往需要使用数量庞大的标... 随着图像处理,语音识别等人工智能技术的发展,很多学习方法尤其是采用深度学习框架的方法取得了优异的性能,在精度和速度方面有了很大的提升,但随之带来的问题也很明显,这些学习方法如果要获得稳定的学习效果,往往需要使用数量庞大的标注数据进行充分训练,否则就会出现欠拟合的情况而导致学习性能的下降.因此,随着任务复杂程度和数据规模的增加,对人工标注数据的数量和质量也提出了更高的要求,造成了标注成本和难度的增大.同时,单一任务的独立学习往往忽略了来自其它任务的经验信息,致使训练冗余重复和学习资源的浪费,也限制了其性能的提升.为了缓解这些问题,属于迁移学习范畴的多任务学习方法逐渐引起了研究者的重视.与单任务学习只使用单个任务的样本信息不同,多任务学习假设不同任务数据分布之间存在一定的相似性,在此基础上通过共同训练和优化建立任务之间的联系.这种训练模式充分促进任务之间的信息交换并达到了相互学习的目的,尤其是在各自任务样本容量有限的条件下,各个任务可以从其它任务获得一定的启发,借助于学习过程中的信息迁移能间接利用其它任务的数据,从而缓解了对大量标注数据的依赖,也达到了提升各自任务学习性能的目的.在此背景之下,本文首先介绍了相关任务的概念,并按照功能的不同对相关任务的类型进行划分,之后对它们的特点进行了逐一描述.然后,本文按照数据的处理模式和任务关系的建模过程不同将当前的主流算法划分为两大类:结构化多任务学习算法和深度多任务学习算法.其中,结构化多任务学习算法采用线性模型,可以直接针对数据进行结构假设并且使用原有标注特征表述任务关系,同时,又可根据学习对象的不同将其细分为基于任务层面和基于特征层面两种不同结构,每种� 展开更多
关键词 多任务学习 信息迁移 任务相似性 贝叶斯生成式模型多任务学习 判别式多任务学习 深度多任务学习
下载PDF
近红外光谱模型转移新算法 被引量:30
8
作者 张进 蔡文生 邵学广 《化学进展》 SCIE CAS CSCD 北大核心 2017年第8期902-910,共9页
模型转移是解决分析仪器或分析方法通用性的关键技术。近红外光谱受测量仪器或测量条件的影响较大,模型转移对近红外光谱技术的实际应用尤为重要。本文综述了近年来近红外光谱分析中被广泛应用和新提出的模型转移算法,从计算原理角度梳... 模型转移是解决分析仪器或分析方法通用性的关键技术。近红外光谱受测量仪器或测量条件的影响较大,模型转移对近红外光谱技术的实际应用尤为重要。本文综述了近年来近红外光谱分析中被广泛应用和新提出的模型转移算法,从计算原理角度梳理了有标样和无标样算法的联系和区别。有标样算法重点介绍了基于多元校正、因子分析、人工神经网络、多任务学习的模型转移方法,无标样算法重点介绍了基于光谱校正、模型参数校正和稳健建模的模型转移方法。从算法的角度分析了各种模型转移方法的特点和转移效果,并展望了模型转移算法的进一步发展。在综述的众多方法中分段直接标准化及其变体仍是模型转移的黄金标准,但是,基于因子分析的算法正变得受欢迎且基于神经网络和多任务学习的方法近年来也吸引了越来越多的注意。但是,在实际应用中,获得标准样品以在主机和子机上测得其光谱比较困难甚至是不可能的,无标样模型转移则更加实用。此外,随着仪器小型化、成像及超光谱成像的发展,模型转移在未来会变得愈加必不可少。 展开更多
关键词 近红外光谱 化学计量学 模型转移 多任务学习 光谱空间转换
原文传递
基于层次多任务深度学习的绝缘子自爆缺陷检测 被引量:27
9
作者 徐建军 黄立达 +1 位作者 闫丽梅 伊娜 《电工技术学报》 EI CSCD 北大核心 2021年第7期1407-1415,共9页
绝缘子是电力线路中重要且使用广泛的器件,随着近年来无人机巡线的迅速普及,从航拍图像中检测绝缘子自爆缺陷成为热点问题。在航拍图像中,自爆绝缘子与正常绝缘子的区分难度相对更大,该文提出一种基于层次多任务深度学习的绝缘子自爆缺... 绝缘子是电力线路中重要且使用广泛的器件,随着近年来无人机巡线的迅速普及,从航拍图像中检测绝缘子自爆缺陷成为热点问题。在航拍图像中,自爆绝缘子与正常绝缘子的区分难度相对更大,该文提出一种基于层次多任务深度学习的绝缘子自爆缺陷检测模型,使用专用的卷积神经网络区分自爆绝缘子和正常绝缘子,并结合多任务学习和特征融合方法提高分类准确率。同时,针对缺乏自爆类数据的问题,提出制作合成图像的数据增强方法。实验结果表明,添加合成图像能有效提高自爆类召回率;层次多任务学习模型与平面分类模型及普通层次模型相比具有更强的分类能力。 展开更多
关键词 绝缘子 多任务学习 缺陷检测 深度学习 层次分类
下载PDF
基于耦合特征与多任务学习的综合能源系统短期负荷预测 被引量:25
10
作者 吕忠麟 顾洁 孟璐 《电力系统自动化》 EI CSCD 北大核心 2022年第11期58-66,共9页
在区域型综合能源系统(IES)内各负荷间耦合程度逐渐增强和对更准确、可靠的用能预测需求日益提高的背景下,提出一种基于耦合特征构造及多任务学习的IES冷热电负荷短期预测方法。首先,从特征工程的角度利用耦合特征挖掘算法构造IES冷热... 在区域型综合能源系统(IES)内各负荷间耦合程度逐渐增强和对更准确、可靠的用能预测需求日益提高的背景下,提出一种基于耦合特征构造及多任务学习的IES冷热电负荷短期预测方法。首先,从特征工程的角度利用耦合特征挖掘算法构造IES冷热电负荷耦合特征变量,提取不同能源负荷需求间的耦合特征,进而将负荷历史数据、耦合特征变量及气温等外生变量作为模型输入,利用多任务学习的共享机制建立IES的负荷预测模型,使得各能源预测子任务间的高维特征及模型参数能够通过基于长短期记忆神经网络搭建的共享学习层相互借鉴,以实现对负荷间耦合特征的充分挖掘和利用。以美国亚利桑那州立大学坦佩校区IES为例,通过预测结果精度对比和深度学习模型可解释性研究,证明所提出的预测方法可以有效提高区域型IES冷热电短期负荷预测的精度。 展开更多
关键词 综合能源系统 耦合特征 多任务学习 冷热电负荷 短期负荷预测
下载PDF
基于低秩表示的多任务短期电力负荷预测的研究 被引量:25
11
作者 苏运 卜凡鹏 +5 位作者 郭乃网 田世明 田英杰 张琪祁 瞿海妮 柳劲松 《现代电力》 北大核心 2019年第3期58-65,共8页
在电力系统负荷预测中,使用传统的单任务学习方法未考虑多个地点的负荷间的潜在关系,忽视关联信息在多个地点间传递的可能会导致学习效果欠佳。针对这一问题,本文提出基于低秩表示的多任务学习方法进行多个地点的多任务负荷预测,该方法... 在电力系统负荷预测中,使用传统的单任务学习方法未考虑多个地点的负荷间的潜在关系,忽视关联信息在多个地点间传递的可能会导致学习效果欠佳。针对这一问题,本文提出基于低秩表示的多任务学习方法进行多个地点的多任务负荷预测,该方法在学习过程中可以提取不同位置的负荷预测模型的共享低维表示,从而可以挖掘多个任务之间的关联关系,同时又可以区别不同任务之间的差别。实验表明,多任务负荷预测的平均性能优于决策树和随机森林等单任务学习方法,在负荷预测的精度上有了一定的提升。 展开更多
关键词 负荷预测 多任务学习 迁移学习 机器学习 低秩
下载PDF
融入罪名关键词的法律判决预测多任务学习模型 被引量:25
12
作者 刘宗林 张梅山 +3 位作者 甄冉冉 公佐权 余南 付国宏 《清华大学学报(自然科学版)》 EI CAS CSCD 北大核心 2019年第7期497-504,共8页
作为新兴的智慧法院技术之一,基于案情描述文本的法律判决预测越来越引起自然语言处理界的关注。罪名预测和法条推荐是法律判决预测的2个重要子任务。这2个子任务密切相关、相互影响,但常常当作独立的任务分别处理。此外,罪名预测和法... 作为新兴的智慧法院技术之一,基于案情描述文本的法律判决预测越来越引起自然语言处理界的关注。罪名预测和法条推荐是法律判决预测的2个重要子任务。这2个子任务密切相关、相互影响,但常常当作独立的任务分别处理。此外,罪名预测和法条推荐还面临易混淆罪名问题。为了解决这些问题,该文提出一种多任务学习模型对这2个任务进行联合建模,同时采用统计方法从案情描述中抽取有助于区分易混淆罪名的指示性罪名关键词,并将它们融入到多任务学习模型中。在CAIL2018法律数据集上的实验结果表明:融入罪名关键词信息的多任务学习模型能够有效解决易混淆罪名问题,并且能够显著地提高罪名预测和法条推荐这2个任务的性能。 展开更多
关键词 法律判决预测 多任务学习 罪名关键词
原文传递
基于多任务深度学习的铝材表面缺陷检测 被引量:23
13
作者 沈晓海 栗泽昊 +2 位作者 李敏 徐晓龙 张学武 《激光与光电子学进展》 CSCD 北大核心 2020年第10期275-284,共10页
针对工业铝材缺陷检测中由缺陷样本稀疏带来的训练过拟合、泛化性能差等问题,提出一种基于多任务深度学习的铝材缺陷检测方法。先基于Faster RCNN设计一个包含铝材区域分割、缺陷多标签分类和缺陷目标检测的多任务深度网络模型;再设计... 针对工业铝材缺陷检测中由缺陷样本稀疏带来的训练过拟合、泛化性能差等问题,提出一种基于多任务深度学习的铝材缺陷检测方法。先基于Faster RCNN设计一个包含铝材区域分割、缺陷多标签分类和缺陷目标检测的多任务深度网络模型;再设计多任务损失层,利用自适应权重对各项任务进行加权平衡,解决了多项任务训练中的收敛不均衡问题。实验结果表明,在有限的数据集支持下,相较于单任务学习,该方法能够在保持分割任务的均交并比(MIoU)指标最优的情况下,分别提高多标签分类和缺陷目标检测的准确率,解决了由铝材缺陷检测样本少引起的检测精度较低的问题。对于多任务应用场景,该模型能够同时完成三个任务,减少推断时间,提高检测效率。 展开更多
关键词 机器视觉 工业检测 缺陷检测 多任务学习 目标检测 图像分类 图像分割
原文传递
基于深度学习的变电站硬压板状态检测与识别算法 被引量:21
14
作者 汪洋 黎恒烜 +2 位作者 鄂士平 王成智 张侃君 《沈阳工业大学学报》 EI CAS 北大核心 2020年第6期676-680,共5页
针对变电站的一键顺控停、送电操作不当将导致投退操作的问题,提出了一种基于深度学习的变电站硬压板状态检测与识别算法.使用一个共享网络提取图像特征,基于多任务学习方法建立3个分支联合解决硬压板位置检测、投切状态检测和标识检测... 针对变电站的一键顺控停、送电操作不当将导致投退操作的问题,提出了一种基于深度学习的变电站硬压板状态检测与识别算法.使用一个共享网络提取图像特征,基于多任务学习方法建立3个分支联合解决硬压板位置检测、投切状态检测和标识检测这3个任务;采集标注了8000张硬压板图片数据用于训练和测试.结果表明,所提出的方法能够在提升硬压板状态识别精度的同时,也提升一键顺控操作的安全性. 展开更多
关键词 一键顺控 硬压板 深度学习 文字检测 文字识别 数据标注 可靠性 多任务学习
下载PDF
基于注意力的多层次混合融合的多任务多模态情感分析 被引量:18
15
作者 宋云峰 任鸽 +1 位作者 杨勇 樊小超 《计算机应用研究》 CSCD 北大核心 2022年第3期716-720,共5页
针对多模态情感分析中的模态内部特征表示和模态间的特征融合问题,结合注意力机制和多任务学习,提出了一种基于注意力的多层次混合融合的多任务多模态情感分析模型MAM(multi-level attention and multi-task)。首先,利用卷积神经网络和... 针对多模态情感分析中的模态内部特征表示和模态间的特征融合问题,结合注意力机制和多任务学习,提出了一种基于注意力的多层次混合融合的多任务多模态情感分析模型MAM(multi-level attention and multi-task)。首先,利用卷积神经网络和双向门控循环单元来实现单模态内部特征的提取;其次,利用跨模态注意力机制实现模态间的两两特征融合;再次,在不同层次使用自注意力机制实现模态贡献度选择;最后,结合多任务学习获得情感和情绪的分类结果。在公开的CMU-MOSEI数据集上的实验结果表明,情感和情绪分类的准确率和F;值均有所提升。 展开更多
关键词 多模态 情感分析 注意力机制 多任务学习
下载PDF
结合图嵌入算法的电力系统多任务暂态稳定评估 被引量:17
16
作者 孙黎霞 彭嘉杰 +2 位作者 白景涛 陈欣凌 田屹昀 《电力系统自动化》 EI CSCD 北大核心 2022年第2期83-91,共9页
电力系统功角稳定与电压稳定是电力系统安全稳定运行的基础,稳定性分析是制定稳定控制策略的依据之一。考虑电网拓扑对电力系统暂态稳定性的影响,利用Node2vec图嵌入算法将电网拓扑映射为低维稠密矩阵,获得电力系统的空间拓扑特征向量,... 电力系统功角稳定与电压稳定是电力系统安全稳定运行的基础,稳定性分析是制定稳定控制策略的依据之一。考虑电网拓扑对电力系统暂态稳定性的影响,利用Node2vec图嵌入算法将电网拓扑映射为低维稠密矩阵,获得电力系统的空间拓扑特征向量,并将其与电气量测数据相组合形成重构数据集,作为评估模型的输入。考虑到电力系统多种稳定性问题往往交织在一起,首先,提出了基于多任务学习的暂态稳定评估模型,并实现了电力系统功角稳定性和电压稳定性的同步评估;然后根据评估结果,确定电力系统失稳区域并实现可视化;最后,采用新英格兰10机39节点测试系统验证了评估模型的有效性。 展开更多
关键词 暂态稳定评估 深度学习 图嵌入 卷积神经网络 长短期记忆网络 多任务学习
下载PDF
采用多任务学习和循环神经网络的语音情感识别算法 被引量:18
17
作者 冯天艺 杨震 《信号处理》 CSCD 北大核心 2019年第7期1133-1140,共8页
随着机器学习的快速发展,许多研究者使用神经网络来解决语音识别领域中的各类问题。然而由于训练数据有限等原因,常规的神经网络分类器普遍存在泛化误差等问题。为了解决此问题,迁移学习中的多任务学习被引入到研究中。本文提出了一种... 随着机器学习的快速发展,许多研究者使用神经网络来解决语音识别领域中的各类问题。然而由于训练数据有限等原因,常规的神经网络分类器普遍存在泛化误差等问题。为了解决此问题,迁移学习中的多任务学习被引入到研究中。本文提出了一种采用多任务学习和循环神经网络的语音情感识别算法(MTL-RNN),将说话人情感识别作为主任务,性别识别和身份识别作为辅助任务,三个任务在神经网络中并行训练。算法模型通过RNN共享层共享网络参数、学习共享特征,通过属性依赖层学习独有特征,以提升模型的分类性能。实验结果表明,本文所提出的MTL-RNN算法在汉语和阿拉伯语、较少说话人和较多说话人的场景下均有较好的识别性能。 展开更多
关键词 语音情感识别 多任务学习 循环神经网络
下载PDF
基于一维卷积神经网络多任务学习的电能质量扰动识别方法 被引量:15
18
作者 王伟 李开成 +2 位作者 许立武 王梦昊 陈西亚 《电测与仪表》 北大核心 2022年第3期18-25,共8页
传统电能质量识别需要先用信号处理技术提取信号特征,且已有的多分类和多标签分类建模方式没有很好地反映多重扰动和单扰动之间的标签关联性,使得复合扰动分类的鲁棒性和抗噪性能不理想。针对这些问题,提出了一种基于多任务学习的一维... 传统电能质量识别需要先用信号处理技术提取信号特征,且已有的多分类和多标签分类建模方式没有很好地反映多重扰动和单扰动之间的标签关联性,使得复合扰动分类的鲁棒性和抗噪性能不理想。针对这些问题,提出了一种基于多任务学习的一维卷积神经网络模型来识别各种电能质量扰动。此结构去除了传统方法的信号特征提取阶段,将扰动分类任务分成四个子任务,设计了相应的标签编码方案,最后输出一个10维标签向量完成多任务分类。仿真结果表明,该方法在不同信噪比时均具有较好的识别准确率,表明此模型具有较强的鲁棒性和抗噪声能力。同时,多任务分类相比One-hot多分类和多标签分类准确率更高,表明了该建模方式的有效性。 展开更多
关键词 电能质量 扰动识别 深度学习 卷积神经网络 多任务学习
下载PDF
基于注意力机制的多任务3D CNN-BLSTM情感语音识别 被引量:14
19
作者 姜特 陈志刚 万永菁 《华东理工大学学报(自然科学版)》 CAS CSCD 北大核心 2022年第4期534-542,共9页
语音情感识别广泛应用于车载驾驶系统、服务行业、教育以及医疗等各个领域。为了使计算机能更准确地识别出说话人的情感,提出了一种基于注意力机制的多任务三维卷积神经网络(ConvolutionNeuralNetwork,CNN)和双向长短期记忆网络(Bidirec... 语音情感识别广泛应用于车载驾驶系统、服务行业、教育以及医疗等各个领域。为了使计算机能更准确地识别出说话人的情感,提出了一种基于注意力机制的多任务三维卷积神经网络(ConvolutionNeuralNetwork,CNN)和双向长短期记忆网络(BidirectionalLong-Short Term Memory,BLSTM)相结合的情感语音识别方法(3D CNN-BLSTM)。基于多谱特征融合组图,利用三维卷积神经网络提取深层语音情感特征,结合性别分类的多任务学习机制提升语音情感识别准确率。在CASIA汉语情感语料库上的实验结果表明,该方法获得了较高的准确率。 展开更多
关键词 语音情感识别 注意力机制 多谱特征融合组图 卷积神经网络 多任务学习
下载PDF
基于特征金字塔和多任务学习的绝缘子图像检测 被引量:15
20
作者 黄玲 赵锴 +3 位作者 李继东 冯浩 王彦卿 马必焕 《电测与仪表》 北大核心 2021年第4期37-43,共7页
作为输电线路巡检中的关键技术,绝缘子的高效检测在维护输电系统安全稳定运行中发挥着重要作用。针对现有方法存在的易丢失目标位置信息,对于复杂背景下的绝缘子检测精度低等缺点,提出一种基于特征金字塔和多任务学习的绝缘子检测方法... 作为输电线路巡检中的关键技术,绝缘子的高效检测在维护输电系统安全稳定运行中发挥着重要作用。针对现有方法存在的易丢失目标位置信息,对于复杂背景下的绝缘子检测精度低等缺点,提出一种基于特征金字塔和多任务学习的绝缘子检测方法。通过融合高、低维度特征信息来构筑特征金字塔,避免目标位置等细节信息的丢失,实现复杂背景中绝缘子的高效检测;引入多任务学习算法,进一步提升模型的泛化能力,提升绝缘子检测精度。利用无人机航拍所得的绝缘子实际图像进行实验,结果表明所提方法可将绝缘子检测精度提升至95.3%,具备较高的工程应用价值。 展开更多
关键词 绝缘子检测 图像分割 特征融合 特征金字塔 多任务学习
下载PDF
上一页 1 2 30 下一页 到第
使用帮助 返回顶部