Multi-range-false-target(MRFT) jamming is particularly challenging for tracking radar due to the dense clutter and the repeated multiple false targets. The conventional association-based multi-target tracking(MTT) met...Multi-range-false-target(MRFT) jamming is particularly challenging for tracking radar due to the dense clutter and the repeated multiple false targets. The conventional association-based multi-target tracking(MTT) methods suffer from high computational complexity and limited usage in the presence of MRFT jamming.In order to solve the above problems, an efficient and adaptable probability hypothesis density(PHD) filter is proposed. Based on the gating strategy, the obtained measurements are firstly classified into the generalized newborn target and the existing target measurements. The two categories of measurements are independently used in the decomposed form of the PHD filter. Meanwhile,an amplitude feature is used to suppress the dense clutter. In addition, an MRFT jamming suppression algorithm is introduced to the filter. Target amplitude information and phase quantization information are jointly used to deal with MRFT jamming and the clutter by modifying the particle weights of the generalized newborn targets. Simulations demonstrate the proposed algorithm can obtain superior correct discrimination rate of MRFT, and high-accuracy tracking performance with high computational efficiency in the presence of MRFT jamming in the dense clutter.展开更多
This paper proposed a robust method based on the definition of Mahalanobis distance to track ground moving target. The feature and the geometry of airborne ground moving target tracking systems are studied at first. B...This paper proposed a robust method based on the definition of Mahalanobis distance to track ground moving target. The feature and the geometry of airborne ground moving target tracking systems are studied at first. Based on this feature, the assignment relation of time-nearby target is calculated via Mahalanobis distance, and then the corresponding transformation formula is deduced. The simulation results show the correctness and effectiveness of the proposed method.展开更多
This paper presents augmented input estimation(AIE)for multiple maneuvering target tracking.Multi-target tracking(MTT)is based on two main parts,data association and estimation.In data association(DA),the best observa...This paper presents augmented input estimation(AIE)for multiple maneuvering target tracking.Multi-target tracking(MTT)is based on two main parts,data association and estimation.In data association(DA),the best observations are assigned to the considered tracks.In real conditions,the number of observations is more than targets and also locations of observations are often so scattered that the association between targets and observations cannot be done simply.In this case,for general MTT problems with unknown numbers of targets,we present a Markov chain Monte-Carlo DA(MCMCDA)algorithm that approximates the optimal Bayesian filter with low complexity in computations.After DA,estimation and tracking should be done.Since in general cases,many targets can have maneuvering motions,then AIE is proposed to cover both the non-maneuvering and maneuvering parts of motion and the maneuver detection procedure is eliminated.This model with an input estimation(IE)approach is a special augmentation in the state space model which considers both the state vector and the unknown input vector as a new augmented state vector.Some comparisons based on the Monte-Carlo simulations are also made to evaluate the performances of the proposed method and other older methods in MTT.展开更多
机载相控阵雷达在探测远程、低空、高速目标时具有较大潜力。本文对机扫加相扫雷达环境下,如何充分发挥相控阵优势,提高机载雷达跟踪远程低空高速目标性能展开研究,在传统边扫边跟(Track while scan,TWS)技术基础上,给出了一种基于目标...机载相控阵雷达在探测远程、低空、高速目标时具有较大潜力。本文对机扫加相扫雷达环境下,如何充分发挥相控阵优势,提高机载雷达跟踪远程低空高速目标性能展开研究,在传统边扫边跟(Track while scan,TWS)技术基础上,给出了一种基于目标威胁度的快速确认跟踪模式。该模式采用有效的相控扫描策略,充分利用其波束捷变能力,通过相控回扫,一方面快速起始航迹,增加高威胁目标的跟踪距离;另一方面适当增加探测数据率,提高对远距高威胁目标的跟踪性能。仿真试验表明,新跟踪方法不但可以较好克服目标雷达散射截面积(Radarcross section,RCS)起伏影响,较快地起始和跟踪目标航迹,而且保留了TWS方法覆盖空域广的优点。展开更多
Aiming at the problem of filtering precision degradation caused by the random outliers of process noise and measurement noise in multi-target tracking(MTT) system,a new Gaussian-Student’s t mixture distribution proba...Aiming at the problem of filtering precision degradation caused by the random outliers of process noise and measurement noise in multi-target tracking(MTT) system,a new Gaussian-Student’s t mixture distribution probability hypothesis density(PHD) robust filtering algorithm based on variational Bayesian inference(GST-vbPHD) is proposed.Firstly,since it can accurately describe the heavy-tailed characteristics of noise with outliers,Gaussian-Student’s t mixture distribution is employed to model process noise and measurement noise respectively.Then Bernoulli random variable is introduced to correct the likelihood distribution of the mixture probability,leading hierarchical Gaussian distribution constructed by the Gaussian-Student’s t mixture distribution suitable to model non-stationary noise.Finally,the approximate solutions including target weights,measurement noise covariance and state estimation error covariance are obtained according to variational Bayesian inference approach.The simulation results show that,in the heavy-tailed noise environment,the proposed algorithm leads to strong improvements over the traditional PHD filter and the Student’s t distribution PHD filter.展开更多
基金supported by the National Natural Science Foundation of China (11472214)。
文摘Multi-range-false-target(MRFT) jamming is particularly challenging for tracking radar due to the dense clutter and the repeated multiple false targets. The conventional association-based multi-target tracking(MTT) methods suffer from high computational complexity and limited usage in the presence of MRFT jamming.In order to solve the above problems, an efficient and adaptable probability hypothesis density(PHD) filter is proposed. Based on the gating strategy, the obtained measurements are firstly classified into the generalized newborn target and the existing target measurements. The two categories of measurements are independently used in the decomposed form of the PHD filter. Meanwhile,an amplitude feature is used to suppress the dense clutter. In addition, an MRFT jamming suppression algorithm is introduced to the filter. Target amplitude information and phase quantization information are jointly used to deal with MRFT jamming and the clutter by modifying the particle weights of the generalized newborn targets. Simulations demonstrate the proposed algorithm can obtain superior correct discrimination rate of MRFT, and high-accuracy tracking performance with high computational efficiency in the presence of MRFT jamming in the dense clutter.
文摘多假设跟踪(multiple hypothesis tracking,MHT)方法是一种在多个扫描上评价关联假设并由此做出决策的贝叶斯型关联跟踪方法,此方法能够在信噪比低10-100倍的状况下获得与单扫描方法相当的性能,但同时会带来相当大的计算量。本文研究了面向航迹MHT中的关键算法,包括航迹得分计算与航迹树的生成、将航迹聚类和假设生成建模为图论问题并求解、N扫描回溯剪枝等,特别关注了这些算法过程的实现;提出了一种关联深度自适应(adaptive association depth,AAD)方法,使关联深度随关联场景的复杂程度自适应变化;仿真研究了本文提出的AAD-MHT跟踪密集目标的性能,结果和分析表明,与深度值固定为6的MHT相比,最大深度为6的AAD-MHT既能保证性能又有效降低了计算量。
基金Supported by the National Natural Science Foundation of China Youth Science Fund Project(Nos.62101405,61372185)
文摘This paper proposed a robust method based on the definition of Mahalanobis distance to track ground moving target. The feature and the geometry of airborne ground moving target tracking systems are studied at first. Based on this feature, the assignment relation of time-nearby target is calculated via Mahalanobis distance, and then the corresponding transformation formula is deduced. The simulation results show the correctness and effectiveness of the proposed method.
文摘This paper presents augmented input estimation(AIE)for multiple maneuvering target tracking.Multi-target tracking(MTT)is based on two main parts,data association and estimation.In data association(DA),the best observations are assigned to the considered tracks.In real conditions,the number of observations is more than targets and also locations of observations are often so scattered that the association between targets and observations cannot be done simply.In this case,for general MTT problems with unknown numbers of targets,we present a Markov chain Monte-Carlo DA(MCMCDA)algorithm that approximates the optimal Bayesian filter with low complexity in computations.After DA,estimation and tracking should be done.Since in general cases,many targets can have maneuvering motions,then AIE is proposed to cover both the non-maneuvering and maneuvering parts of motion and the maneuver detection procedure is eliminated.This model with an input estimation(IE)approach is a special augmentation in the state space model which considers both the state vector and the unknown input vector as a new augmented state vector.Some comparisons based on the Monte-Carlo simulations are also made to evaluate the performances of the proposed method and other older methods in MTT.
文摘机载相控阵雷达在探测远程、低空、高速目标时具有较大潜力。本文对机扫加相扫雷达环境下,如何充分发挥相控阵优势,提高机载雷达跟踪远程低空高速目标性能展开研究,在传统边扫边跟(Track while scan,TWS)技术基础上,给出了一种基于目标威胁度的快速确认跟踪模式。该模式采用有效的相控扫描策略,充分利用其波束捷变能力,通过相控回扫,一方面快速起始航迹,增加高威胁目标的跟踪距离;另一方面适当增加探测数据率,提高对远距高威胁目标的跟踪性能。仿真试验表明,新跟踪方法不但可以较好克服目标雷达散射截面积(Radarcross section,RCS)起伏影响,较快地起始和跟踪目标航迹,而且保留了TWS方法覆盖空域广的优点。
基金Supported by the National Natural Science Foundation of China(No.61976080)the Science and Technology Key Project of Science and Technology Department of Henan Province(No.212102310298)the Innovation and Quality Improvement Project for Graduate Education of Henan University(No.SYL20010101)。
文摘Aiming at the problem of filtering precision degradation caused by the random outliers of process noise and measurement noise in multi-target tracking(MTT) system,a new Gaussian-Student’s t mixture distribution probability hypothesis density(PHD) robust filtering algorithm based on variational Bayesian inference(GST-vbPHD) is proposed.Firstly,since it can accurately describe the heavy-tailed characteristics of noise with outliers,Gaussian-Student’s t mixture distribution is employed to model process noise and measurement noise respectively.Then Bernoulli random variable is introduced to correct the likelihood distribution of the mixture probability,leading hierarchical Gaussian distribution constructed by the Gaussian-Student’s t mixture distribution suitable to model non-stationary noise.Finally,the approximate solutions including target weights,measurement noise covariance and state estimation error covariance are obtained according to variational Bayesian inference approach.The simulation results show that,in the heavy-tailed noise environment,the proposed algorithm leads to strong improvements over the traditional PHD filter and the Student’s t distribution PHD filter.