In this paper, ballistic impact tests on wrapped multi-layer Kevlar 49 woven fabric systems were carried out with a flat blade projectile to investigate the impact response during a fan blade out event. The influences...In this paper, ballistic impact tests on wrapped multi-layer Kevlar 49 woven fabric systems were carried out with a flat blade projectile to investigate the impact response during a fan blade out event. The influences of the number of Kevlar layers and pre-tension were discussed particularly. Test results were used to analyze failure modes and energy absorption characteristics of multi-ply Kevlar fabrics. Results show that there are two kinds of impact damage for fabrics: global deformation mainly involving stretching of yarns in the impact region and fabric wrinkle from both sides to the impact zone, and local damage characterized by yarn fracture, yarn pull-out, and yarn unraveling. The energy absorption capability of Kevlar 49 woven fabrics improves with the number of fabric layers. The energy absorbed by multi-layer fabrics increases slightly at the beginning and then decreases substantially with pre-tension. The work in this paper can provide guidance for designing light-weight multi-layer fabrics containment systems.展开更多
Marine umbilical is one of the key equipment for subsea oil and gas exploitation,which is usually integrated by a great number of different functional components with multi-layers.The layout of these components direct...Marine umbilical is one of the key equipment for subsea oil and gas exploitation,which is usually integrated by a great number of different functional components with multi-layers.The layout of these components directly affects manufacturing,operation and storage performances of the umbilical.For the multi-layer cross-sectional layout design of the umbilical,a quantifiable multi-objective optimization model is established according to the operation and storage requirements.Considering the manufacturing factors,the multi-layering strategy based on contact point identification is introduced for a great number of functional components.Then,the GA-GLM global optimization algorithm is proposed combining the genetic algorithm and the generalized multiplier method,and the selection operator of the genetic algorithm is improved based on the steepest descent method.Genetic algorithm is used to find the optimal solution in the global space,which can converge from any initial layout to the feasible layout solution.The feasible layout solution is taken as the initial value of the generalized multiplier method for fast and accurate solution.Finally,taking umbilicals with a great number of components as examples,the results show that the cross-sectional performance of the umbilical obtained by optimization algorithm is better and the solution efficiency is higher.Meanwhile,the multi-layering strategy is effective and feasible.The design method proposed in this paper can quickly obtain the optimal multi-layer cross-sectional layout,which replaces the manual design,and provides useful reference and guidance for the umbilical industry.展开更多
Malware detection has become mission sensitive as its threats spread from computer systems to Internet of things systems.Modern malware variants are generally equipped with sophisticated packers,which allow them bypas...Malware detection has become mission sensitive as its threats spread from computer systems to Internet of things systems.Modern malware variants are generally equipped with sophisticated packers,which allow them bypass modern machine learning based detection systems.To detect packed malware variants,unpacking techniques and dynamic malware analysis are the two choices.However,unpacking techniques cannot always be useful since there exist some packers such as private packers which are hard to unpack.Although dynamic malware analysis can obtain the running behaviours of executables,the unpacking behaviours of packers add noisy information to the real behaviours of executables,which has a bad affect on accuracy.To overcome these challenges,in this paper,we propose a new method which first extracts a series of system calls which is sensitive to malicious behaviours,then use principal component analysis to extract features of these sensitive system calls,and finally adopt multi-layers neural networks to classify the features of malware variants and legitimate ones.Theoretical analysis and real-life experimental results show that our packed malware variants detection technique is comparable with the the state-of-art methods in terms of accuracy.Our approach can achieve more than 95.6\%of detection accuracy and 0.048 s of classification time cost.展开更多
The microstructure change in thin NiFe/Cu/NiFe films during the magnetization process was observed by the Lorentz electronmicroscopy. TWo types of films were prepared: (1) one NiFe layer with anisotropy and the other ...The microstructure change in thin NiFe/Cu/NiFe films during the magnetization process was observed by the Lorentz electronmicroscopy. TWo types of films were prepared: (1) one NiFe layer with anisotropy and the other layer without, and (2) both NiFe layershave anisotropy normal each other. The domain wall migration and magnetization rotation processes in each of NiFe layers could be observed separately. The presence of magnetic anisotropy in the magnetic layer effectively controls the behavior of magnetic domains. Theinteraction between the two NiFe layers of the film could be observed not so strong in the present experiment.展开更多
During the stimulating unconventional reservoirs, the vertical propagation of hydraulic fractures is crucial for enlarging the stimulated reservoir volume, especially in multi-layers of sandstone, mudstone and shale(s...During the stimulating unconventional reservoirs, the vertical propagation of hydraulic fractures is crucial for enlarging the stimulated reservoir volume, especially in multi-layers of sandstone, mudstone and shale(sand-mud-shale). To investigate the effects of lithological interface and fracturing fluid viscosity on the fracture propagation vertically in the multi-layers, hydraulic fracturing experiments in laboratory were performed on the outcrop samples of 30 cm × 30 cm × 30 cm collected from Yanchang Formation in Ordos Basin. The results show that hydraulic fractures are multi-branched and zig-zagged when they initiate in shale, simple when they commence in sandstone or mudstone. Hydraulic fractures created with low-viscosity fracturing fluid can only cross sandstone from mudstone, but those induced by high-viscosity fracturing fluid can cross the sand-mud-shale layers. Furthermore, the high-viscosity fracturing fluid reduces the fractures complexity in shale, facilitating vertical fracture propagation. The injection pressure fluctuates slightly as the hydraulic fracture extends from shale to sandstone or mudstone, otherwise it fluctuates significantly. From the laboratory investigation, a hydraulic fracturing scheme for Chang 7 Member was proposed, with its feasibility proved in field tests.展开更多
Applications of Electro-Rheological (ER) or Magneto-Rheological (MR) fluids as typical smart materials have been widely investigated over the past decades (since their introduction in 40’s). The special applications ...Applications of Electro-Rheological (ER) or Magneto-Rheological (MR) fluids as typical smart materials have been widely investigated over the past decades (since their introduction in 40’s). The special applications of these materials as a means of noise suppression are not yet investigated. Constrained Layer Damping (CLD) sheets can be realized by incorporating EMR (ER/MR) materials. In this way, a multilayered damping sheet is obtained with adaptive (tunable) stiffness and damping characteristics. These properties are easily changed in proportion to the electric (magnetic) field applied upon the EMR layer. This notion has been introduced for semi-active vibration control problems. Herein, such panels incorporating EMR material are proposed for adaptive acoustic treatments. Modeling (simulation) of a 3-layered panel with the middle layer being EMR with adjustable properties is carried out in this paper. The tunability of transmission/absorption characteristics of these composite sheets enables us making smart panels for adaptive noise and acoustic treatments. An adaptive performance can be achieved via changing the properties of such panels, on line, according to some sensor outputs. The main objective is to develop proper models to predict the Transmission Loss (TL) of such panels. Also, the TL of this panel is compared with the middle layer of a Newtonian fluid.展开更多
Mg-Ni multi-layer thin film was deposited on (001) Si wafer by magnetron sputtering with dual-target. X-ray diffraction (XRD) and scanning electron microscopy (SEM) analysis reveal that the microstructure of the Mg-Ni...Mg-Ni multi-layer thin film was deposited on (001) Si wafer by magnetron sputtering with dual-target. X-ray diffraction (XRD) and scanning electron microscopy (SEM) analysis reveal that the microstructure of the Mg-Ni multilayer thin film is composed of fine-crystalline Ni layer and crystalline [001] Mg layer. Hydrogenation process of the films were carried out by using the automatic gas reaction controller. The films undergone hydrogenation for different time were analyzed by XRD. The results show that hydrogenation properties of Mg with different preferential orientations are different. (002) diffraction peak of Mg disappears in compensating the appearing of the peaks of Mg2NiH4 and MgH2 in hydrogenation at 533 K, while the (101) peak still remains. The result reveals that the Mg film with (001) preferential orientation absorbs hydrogen at certain temperature easier than that of the Mg film with (101) orientation. This phenomenon can be explained in the view point of the energy change for the nucleation and growth of hydride in different crystal plane.展开更多
基金co-supported by the National Natural Science Foundation of China (No.51575262)the China Postdoctoral Science Foundation (No.2015M571754)the Aeronautical Science Foundation of China (No.2015ZB52008)
文摘In this paper, ballistic impact tests on wrapped multi-layer Kevlar 49 woven fabric systems were carried out with a flat blade projectile to investigate the impact response during a fan blade out event. The influences of the number of Kevlar layers and pre-tension were discussed particularly. Test results were used to analyze failure modes and energy absorption characteristics of multi-ply Kevlar fabrics. Results show that there are two kinds of impact damage for fabrics: global deformation mainly involving stretching of yarns in the impact region and fabric wrinkle from both sides to the impact zone, and local damage characterized by yarn fracture, yarn pull-out, and yarn unraveling. The energy absorption capability of Kevlar 49 woven fabrics improves with the number of fabric layers. The energy absorbed by multi-layer fabrics increases slightly at the beginning and then decreases substantially with pre-tension. The work in this paper can provide guidance for designing light-weight multi-layer fabrics containment systems.
基金financially supported by the National Natural Science Foundation of China(Grant Nos.52001088,52271269,U1906233)the Natural Science Foundation of Heilongjiang Province(Grant No.LH2021E050)+2 种基金the State Key Laboratory of Ocean Engineering(Grant No.GKZD010084)Liaoning Province’s Xing Liao Talents Program(Grant No.XLYC2002108)Dalian City Supports Innovation and Entrepreneurship Projects for High-Level Talents(Grant No.2021RD16)。
文摘Marine umbilical is one of the key equipment for subsea oil and gas exploitation,which is usually integrated by a great number of different functional components with multi-layers.The layout of these components directly affects manufacturing,operation and storage performances of the umbilical.For the multi-layer cross-sectional layout design of the umbilical,a quantifiable multi-objective optimization model is established according to the operation and storage requirements.Considering the manufacturing factors,the multi-layering strategy based on contact point identification is introduced for a great number of functional components.Then,the GA-GLM global optimization algorithm is proposed combining the genetic algorithm and the generalized multiplier method,and the selection operator of the genetic algorithm is improved based on the steepest descent method.Genetic algorithm is used to find the optimal solution in the global space,which can converge from any initial layout to the feasible layout solution.The feasible layout solution is taken as the initial value of the generalized multiplier method for fast and accurate solution.Finally,taking umbilicals with a great number of components as examples,the results show that the cross-sectional performance of the umbilical obtained by optimization algorithm is better and the solution efficiency is higher.Meanwhile,the multi-layering strategy is effective and feasible.The design method proposed in this paper can quickly obtain the optimal multi-layer cross-sectional layout,which replaces the manual design,and provides useful reference and guidance for the umbilical industry.
基金National Science foundation of China under Grant No.61772191,No.61472131.
文摘Malware detection has become mission sensitive as its threats spread from computer systems to Internet of things systems.Modern malware variants are generally equipped with sophisticated packers,which allow them bypass modern machine learning based detection systems.To detect packed malware variants,unpacking techniques and dynamic malware analysis are the two choices.However,unpacking techniques cannot always be useful since there exist some packers such as private packers which are hard to unpack.Although dynamic malware analysis can obtain the running behaviours of executables,the unpacking behaviours of packers add noisy information to the real behaviours of executables,which has a bad affect on accuracy.To overcome these challenges,in this paper,we propose a new method which first extracts a series of system calls which is sensitive to malicious behaviours,then use principal component analysis to extract features of these sensitive system calls,and finally adopt multi-layers neural networks to classify the features of malware variants and legitimate ones.Theoretical analysis and real-life experimental results show that our packed malware variants detection technique is comparable with the the state-of-art methods in terms of accuracy.Our approach can achieve more than 95.6\%of detection accuracy and 0.048 s of classification time cost.
文摘The microstructure change in thin NiFe/Cu/NiFe films during the magnetization process was observed by the Lorentz electronmicroscopy. TWo types of films were prepared: (1) one NiFe layer with anisotropy and the other layer without, and (2) both NiFe layershave anisotropy normal each other. The domain wall migration and magnetization rotation processes in each of NiFe layers could be observed separately. The presence of magnetic anisotropy in the magnetic layer effectively controls the behavior of magnetic domains. Theinteraction between the two NiFe layers of the film could be observed not so strong in the present experiment.
基金sponsored by the Strategic Cooperation Technology Projects of CNPC and CUPB (ZLZX2020-02)the National Science Fund for Distinguished Young Scholars (Grant No.51925405)the National Natural Science Foundation of China(Grant no. 51774299)。
文摘During the stimulating unconventional reservoirs, the vertical propagation of hydraulic fractures is crucial for enlarging the stimulated reservoir volume, especially in multi-layers of sandstone, mudstone and shale(sand-mud-shale). To investigate the effects of lithological interface and fracturing fluid viscosity on the fracture propagation vertically in the multi-layers, hydraulic fracturing experiments in laboratory were performed on the outcrop samples of 30 cm × 30 cm × 30 cm collected from Yanchang Formation in Ordos Basin. The results show that hydraulic fractures are multi-branched and zig-zagged when they initiate in shale, simple when they commence in sandstone or mudstone. Hydraulic fractures created with low-viscosity fracturing fluid can only cross sandstone from mudstone, but those induced by high-viscosity fracturing fluid can cross the sand-mud-shale layers. Furthermore, the high-viscosity fracturing fluid reduces the fractures complexity in shale, facilitating vertical fracture propagation. The injection pressure fluctuates slightly as the hydraulic fracture extends from shale to sandstone or mudstone, otherwise it fluctuates significantly. From the laboratory investigation, a hydraulic fracturing scheme for Chang 7 Member was proposed, with its feasibility proved in field tests.
文摘Applications of Electro-Rheological (ER) or Magneto-Rheological (MR) fluids as typical smart materials have been widely investigated over the past decades (since their introduction in 40’s). The special applications of these materials as a means of noise suppression are not yet investigated. Constrained Layer Damping (CLD) sheets can be realized by incorporating EMR (ER/MR) materials. In this way, a multilayered damping sheet is obtained with adaptive (tunable) stiffness and damping characteristics. These properties are easily changed in proportion to the electric (magnetic) field applied upon the EMR layer. This notion has been introduced for semi-active vibration control problems. Herein, such panels incorporating EMR material are proposed for adaptive acoustic treatments. Modeling (simulation) of a 3-layered panel with the middle layer being EMR with adjustable properties is carried out in this paper. The tunability of transmission/absorption characteristics of these composite sheets enables us making smart panels for adaptive noise and acoustic treatments. An adaptive performance can be achieved via changing the properties of such panels, on line, according to some sensor outputs. The main objective is to develop proper models to predict the Transmission Loss (TL) of such panels. Also, the TL of this panel is compared with the middle layer of a Newtonian fluid.
基金This work was financially supported by the National Natural Science Foundation of China (No. 50401015), the Ministry of Education (No. IRT0551) and Guangdong Provincial Natural Science Foundation (Team project).
文摘Mg-Ni multi-layer thin film was deposited on (001) Si wafer by magnetron sputtering with dual-target. X-ray diffraction (XRD) and scanning electron microscopy (SEM) analysis reveal that the microstructure of the Mg-Ni multilayer thin film is composed of fine-crystalline Ni layer and crystalline [001] Mg layer. Hydrogenation process of the films were carried out by using the automatic gas reaction controller. The films undergone hydrogenation for different time were analyzed by XRD. The results show that hydrogenation properties of Mg with different preferential orientations are different. (002) diffraction peak of Mg disappears in compensating the appearing of the peaks of Mg2NiH4 and MgH2 in hydrogenation at 533 K, while the (101) peak still remains. The result reveals that the Mg film with (001) preferential orientation absorbs hydrogen at certain temperature easier than that of the Mg film with (101) orientation. This phenomenon can be explained in the view point of the energy change for the nucleation and growth of hydride in different crystal plane.