期刊导航
期刊开放获取
cqvip
退出
期刊文献
+
任意字段
题名或关键词
题名
关键词
文摘
作者
第一作者
机构
刊名
分类号
参考文献
作者简介
基金资助
栏目信息
任意字段
题名或关键词
题名
关键词
文摘
作者
第一作者
机构
刊名
分类号
参考文献
作者简介
基金资助
栏目信息
检索
高级检索
期刊导航
共找到
1
篇文章
<
1
>
每页显示
20
50
100
已选择
0
条
导出题录
引用分析
参考文献
引证文献
统计分析
检索结果
已选文献
显示方式:
文摘
详细
列表
相关度排序
被引量排序
时效性排序
基于多特征语义匹配的知识库问答系统
被引量:
3
1
作者
赵小虎
赵成龙
《计算机应用》
CSCD
北大核心
2020年第7期1873-1878,共6页
知识库问答(KBQA)任务主要目的在于精确地将自然语言问题和知识库(KB)中的三元组进行匹配。传统的KBQA方法通常专注于实体识别和谓语匹配,实体识别的错误会导致错误传播从而无法得到正确的答案。针对上述问题提出一种端到端的解决方案...
知识库问答(KBQA)任务主要目的在于精确地将自然语言问题和知识库(KB)中的三元组进行匹配。传统的KBQA方法通常专注于实体识别和谓语匹配,实体识别的错误会导致错误传播从而无法得到正确的答案。针对上述问题提出一种端到端的解决方案直接匹配问题和三元组,该系统主要包含候选三元组生成和候选三元组排序两个部分来实现精确问答。首先通过BM25算法计算问题和知识库中三元组的相关性生成候选三元组;然后通过多特征语义匹配模型(MFSMM)进行三元组的排序,即用MFSMM分别通过双向长短时记忆网络(Bi-LSTM)和卷积神经网络(CNN)实现语义相似度和字符相似度的计算,并通过融合来对三元组进行排序。该系统在NLPCC-ICCPOL 2016KBQA数据集上的平均F1为80.35%,接近了现有最好的表现。
展开更多
关键词
知识库
自然语言问题
三元组
多特征语义匹配模型
语义相似度
字符相似度
下载PDF
职称材料
题名
基于多特征语义匹配的知识库问答系统
被引量:
3
1
作者
赵小虎
赵成龙
机构
矿山互联网应用技术国家地方联合工程实验室(中国矿业大学)
中国矿业大学信息与控制工程学院
出处
《计算机应用》
CSCD
北大核心
2020年第7期1873-1878,共6页
基金
国家重点研发计划项目(2017YFC0804400)。
文摘
知识库问答(KBQA)任务主要目的在于精确地将自然语言问题和知识库(KB)中的三元组进行匹配。传统的KBQA方法通常专注于实体识别和谓语匹配,实体识别的错误会导致错误传播从而无法得到正确的答案。针对上述问题提出一种端到端的解决方案直接匹配问题和三元组,该系统主要包含候选三元组生成和候选三元组排序两个部分来实现精确问答。首先通过BM25算法计算问题和知识库中三元组的相关性生成候选三元组;然后通过多特征语义匹配模型(MFSMM)进行三元组的排序,即用MFSMM分别通过双向长短时记忆网络(Bi-LSTM)和卷积神经网络(CNN)实现语义相似度和字符相似度的计算,并通过融合来对三元组进行排序。该系统在NLPCC-ICCPOL 2016KBQA数据集上的平均F1为80.35%,接近了现有最好的表现。
关键词
知识库
自然语言问题
三元组
多特征语义匹配模型
语义相似度
字符相似度
Keywords
Knowledge
Base(KB)
natural
language
question
triple
multi
-
feature
semantics
matching
model
(
mfsmm
)
semantic
similarity
character
similarity
分类号
TP391 [自动化与计算机技术—计算机应用技术]
下载PDF
职称材料
题名
作者
出处
发文年
被引量
操作
1
基于多特征语义匹配的知识库问答系统
赵小虎
赵成龙
《计算机应用》
CSCD
北大核心
2020
3
下载PDF
职称材料
已选择
0
条
导出题录
引用分析
参考文献
引证文献
统计分析
检索结果
已选文献
上一页
1
下一页
到第
页
确定
用户登录
登录
IP登录
使用帮助
返回顶部