In recent years,the large-scale integration of re-newable energy sources represented by wind power and the widespread application of power electronic devices in power systems have led to the emergence of multi-frequen...In recent years,the large-scale integration of re-newable energy sources represented by wind power and the widespread application of power electronic devices in power systems have led to the emergence of multi-frequency oscillation problems covering multiple frequency segments,which seriously threaten system stability and restrict the accommodation of renewable energy.The oscillation problems related to renewable energy integration have become one of the most popular topics in the field of wind power integration and power system stability research.It has received extensive attention from both academia and industries with many promising research results achieved to date.This paper first analyzes several typical multi-frequency oscillation events caused by large-scale wind power integration in domestic and foreign projects,then studies the multi-frequency oscillation problems,including wind turbine’s shafting torsional oscillation,sub/super-synchronous oscillation and high frequency resonance.The state of the art is systematically summarized from the aspects of oscillation mechanism,analysis methods and mitigation measures,and the future research directions are explored.展开更多
In this article, some methods are proposed for enhancing the converging velocity of the COA (chaos optimization algorithm) based on using carrier wave two times, which can greatly increase the speed and efficiency of ...In this article, some methods are proposed for enhancing the converging velocity of the COA (chaos optimization algorithm) based on using carrier wave two times, which can greatly increase the speed and efficiency of the first carrier wave’s search for the optimal point in implementing the sophisticated searching during the second carrier wave is faster and more accurate. In addition, the concept of using the carrier wave three times is proposed and put into practice to tackle the multi-variables opti- mization problems, where the searching for the optimal point of the last several variables is frequently worse than the first several ones.展开更多
Because of the uncertainty and randomness of wind speed, wind power has characteristics such as nonlinearity and multiple frequencies. Accurate prediction of wind power is one effective means of improving wind power i...Because of the uncertainty and randomness of wind speed, wind power has characteristics such as nonlinearity and multiple frequencies. Accurate prediction of wind power is one effective means of improving wind power integration. Because the traditional single model cannot fully characterize the fluctuating characteristics of wind power, scholars have attempted to build other prediction models based on empirical mode decomposition(EMD) or ensemble empirical mode decomposition(EEMD) to tackle this problem. However, the prediction accuracy of these models is affected by modal aliasing and illusive components. Aimed at these defects, this paper proposes a multi-frequency combination prediction model based on variational mode decomposition(VMD). We use a back propagation neural network(BPNN),autoregressive moving average(ARMA)model, and least square support vector machine(LS-SVM) to predict high, intermediate,and low frequency components,respectively. Based on the predicted values of each component, the BPNN is applied to combine them into a final wind power prediction value.Finally,the prediction performance of the single prediction models(ARMA,BPNN and LS-SVM)and the decomposition prediction models(EMD and EEMD) are used to compare with the proposed VMD model according to the evaluation indices such as average absolute error, mean square error,and root mean square error to validate its feasibility and accuracy. The results show that the prediction accuracy of the proposed VMD model is higher.展开更多
This paper proposes a current control scheme for a grid-connected pulse width modulator(PWM) voltage source converter(GC-VSC) under imbalanced and distorted supply voltage conditions.The control scheme is implemented ...This paper proposes a current control scheme for a grid-connected pulse width modulator(PWM) voltage source converter(GC-VSC) under imbalanced and distorted supply voltage conditions.The control scheme is implemented in the positive synchronously rotating reference frame and composed of a single proportional integral(PI) regulator and multi-frequency resonant controllers tuned at the frequencies of 2ω and 6ω,respectively.The experimental results,with the target of eliminating the active power oscillations and current harmonics on a prototype GC-VSC system,validate the feasibility of the proposed current control scheme during supply voltage imbalance and distortion.展开更多
This letter presents a multi-frequency proportional-resonant (MFPR) current controller developed for PWM voltage source converter (VSC) under the unbalanced supply voltage conditions. The delta operator is used in...This letter presents a multi-frequency proportional-resonant (MFPR) current controller developed for PWM voltage source converter (VSC) under the unbalanced supply voltage conditions. The delta operator is used in place of the shift operator for the implementation of MFPR by using a low-cost fixed-point DSE The experimental results with an alternative control strategy validated the feasibility of the proposed MFPR current controller for the PWM VSC during voltage unbalance.展开更多
To fully extract and mine the multi-scale features of reservoirs and geologic structures in time/depth and space dimensions, a new 3D multi-scale volumetric curvature (MSVC) methodology is presented in this paper. W...To fully extract and mine the multi-scale features of reservoirs and geologic structures in time/depth and space dimensions, a new 3D multi-scale volumetric curvature (MSVC) methodology is presented in this paper. We also propose a fast algorithm for computing 3D volumetric curvature. In comparison to conventional volumetric curvature attributes, its main improvements and key algorithms introduce multi-frequency components expansion in time-frequency domain and the corresponding multi-scale adaptive differential operator in the wavenumber domain, into the volumetric curvature calculation. This methodology can simultaneously depict seismic multi-scale features in both time and space. Additionally, we use data fusion of volumetric curvatures at various scales to take full advantage of the geologic features and anomalies extracted by curvature measurements at different scales. The 3D MSVC can highlight geologic anomalies and reduce noise at the same time. Thus, it improves the interpretation efficiency of curvature attributes analysis. The 3D MSVC is applied to both land and marine 3D seismic data. The results demonstrate that it can indicate the spatial distribution of reservoirs, detect faults and fracture zones, and identify their multi-scale properties.展开更多
Large-scale renewable energy integration decreases the system inertia and restricts frequency regulation. To maintain the frequency stability, allocating adequate frequency-support sources poses a critical challenge t...Large-scale renewable energy integration decreases the system inertia and restricts frequency regulation. To maintain the frequency stability, allocating adequate frequency-support sources poses a critical challenge to planners. In this context, we propose a frequency-constrained coordination planning model of thermal units, wind farms, and battery energy storage systems (BESSs) to provide satisfactory frequency supports. Firstly, a modified multi-machine system frequency response (MSFR) model that accounts for the dynamic responses from both synchronous generators and grid-connected inverters is constructed with preset power-headroom. Secondly, the rate-of-change-of-frequency (ROCOF) and frequency response power are deduced to construct frequency constraints. A data-driven piecewise linearization (DDPWL) method based on hyperplane fitting and data classification is applied to linearize the highly nonlinear frequency response power. Thirdly, frequency constraints are inserted into our planning model, while the unit commitment based on the coordinated operation of the thermal-hydro-wind-BESS hybrid system is implemented. At last, the proposed model is applied to the IEEE RTS-79 test system. The results demonstrate the effectiveness of our co-planning model to keep the frequency stability.展开更多
基金This work was supported by the National Natural Science Foundation of China(No.51577174).
文摘In recent years,the large-scale integration of re-newable energy sources represented by wind power and the widespread application of power electronic devices in power systems have led to the emergence of multi-frequency oscillation problems covering multiple frequency segments,which seriously threaten system stability and restrict the accommodation of renewable energy.The oscillation problems related to renewable energy integration have become one of the most popular topics in the field of wind power integration and power system stability research.It has received extensive attention from both academia and industries with many promising research results achieved to date.This paper first analyzes several typical multi-frequency oscillation events caused by large-scale wind power integration in domestic and foreign projects,then studies the multi-frequency oscillation problems,including wind turbine’s shafting torsional oscillation,sub/super-synchronous oscillation and high frequency resonance.The state of the art is systematically summarized from the aspects of oscillation mechanism,analysis methods and mitigation measures,and the future research directions are explored.
基金Project supported by the National Natural Science Foundation of China (No. 60474064), and the Natural Science Foundation of Zhejiang Province (No. Y105694), China
文摘In this article, some methods are proposed for enhancing the converging velocity of the COA (chaos optimization algorithm) based on using carrier wave two times, which can greatly increase the speed and efficiency of the first carrier wave’s search for the optimal point in implementing the sophisticated searching during the second carrier wave is faster and more accurate. In addition, the concept of using the carrier wave three times is proposed and put into practice to tackle the multi-variables opti- mization problems, where the searching for the optimal point of the last several variables is frequently worse than the first several ones.
基金supported by the National Natural Science Foundation of China (No. 51507141)the National Key Research and Development Program of China (No. 2016YFC0401409)the Shaanxi provincial education office fund (No. 17JK0547)
文摘Because of the uncertainty and randomness of wind speed, wind power has characteristics such as nonlinearity and multiple frequencies. Accurate prediction of wind power is one effective means of improving wind power integration. Because the traditional single model cannot fully characterize the fluctuating characteristics of wind power, scholars have attempted to build other prediction models based on empirical mode decomposition(EMD) or ensemble empirical mode decomposition(EEMD) to tackle this problem. However, the prediction accuracy of these models is affected by modal aliasing and illusive components. Aimed at these defects, this paper proposes a multi-frequency combination prediction model based on variational mode decomposition(VMD). We use a back propagation neural network(BPNN),autoregressive moving average(ARMA)model, and least square support vector machine(LS-SVM) to predict high, intermediate,and low frequency components,respectively. Based on the predicted values of each component, the BPNN is applied to combine them into a final wind power prediction value.Finally,the prediction performance of the single prediction models(ARMA,BPNN and LS-SVM)and the decomposition prediction models(EMD and EEMD) are used to compare with the proposed VMD model according to the evaluation indices such as average absolute error, mean square error,and root mean square error to validate its feasibility and accuracy. The results show that the prediction accuracy of the proposed VMD model is higher.
基金supported by the National Natural Science Foundation of China(No.50907057)the National High-Tech Research and Development Program (863) of China(No.2007AA05Z419)
文摘This paper proposes a current control scheme for a grid-connected pulse width modulator(PWM) voltage source converter(GC-VSC) under imbalanced and distorted supply voltage conditions.The control scheme is implemented in the positive synchronously rotating reference frame and composed of a single proportional integral(PI) regulator and multi-frequency resonant controllers tuned at the frequencies of 2ω and 6ω,respectively.The experimental results,with the target of eliminating the active power oscillations and current harmonics on a prototype GC-VSC system,validate the feasibility of the proposed current control scheme during supply voltage imbalance and distortion.
基金Project (No. 50577056) supported by the National Natural Science Foundation of China
文摘This letter presents a multi-frequency proportional-resonant (MFPR) current controller developed for PWM voltage source converter (VSC) under the unbalanced supply voltage conditions. The delta operator is used in place of the shift operator for the implementation of MFPR by using a low-cost fixed-point DSE The experimental results with an alternative control strategy validated the feasibility of the proposed MFPR current controller for the PWM VSC during voltage unbalance.
基金supported by the National Natural Science Foundation of China (No. 41004054) Research Fund for the Doctoral Program of Higher Education of China (No. 20105122120002)Natural Science Key Project, Sichuan Provincial Department of Education (No. 092A011)
文摘To fully extract and mine the multi-scale features of reservoirs and geologic structures in time/depth and space dimensions, a new 3D multi-scale volumetric curvature (MSVC) methodology is presented in this paper. We also propose a fast algorithm for computing 3D volumetric curvature. In comparison to conventional volumetric curvature attributes, its main improvements and key algorithms introduce multi-frequency components expansion in time-frequency domain and the corresponding multi-scale adaptive differential operator in the wavenumber domain, into the volumetric curvature calculation. This methodology can simultaneously depict seismic multi-scale features in both time and space. Additionally, we use data fusion of volumetric curvatures at various scales to take full advantage of the geologic features and anomalies extracted by curvature measurements at different scales. The 3D MSVC can highlight geologic anomalies and reduce noise at the same time. Thus, it improves the interpretation efficiency of curvature attributes analysis. The 3D MSVC is applied to both land and marine 3D seismic data. The results demonstrate that it can indicate the spatial distribution of reservoirs, detect faults and fracture zones, and identify their multi-scale properties.
基金This work was supported by the National Key R&D Program of China (No. 2016YFB0900100)the National Natural Science Foundation of China (No. 51807116).
文摘Large-scale renewable energy integration decreases the system inertia and restricts frequency regulation. To maintain the frequency stability, allocating adequate frequency-support sources poses a critical challenge to planners. In this context, we propose a frequency-constrained coordination planning model of thermal units, wind farms, and battery energy storage systems (BESSs) to provide satisfactory frequency supports. Firstly, a modified multi-machine system frequency response (MSFR) model that accounts for the dynamic responses from both synchronous generators and grid-connected inverters is constructed with preset power-headroom. Secondly, the rate-of-change-of-frequency (ROCOF) and frequency response power are deduced to construct frequency constraints. A data-driven piecewise linearization (DDPWL) method based on hyperplane fitting and data classification is applied to linearize the highly nonlinear frequency response power. Thirdly, frequency constraints are inserted into our planning model, while the unit commitment based on the coordinated operation of the thermal-hydro-wind-BESS hybrid system is implemented. At last, the proposed model is applied to the IEEE RTS-79 test system. The results demonstrate the effectiveness of our co-planning model to keep the frequency stability.