Wellbore stability is a key to have a successful drilling operation.Induced stresses are the main factors affecting wellbore instability and associated problems in drilling operations.These stresses are significantly ...Wellbore stability is a key to have a successful drilling operation.Induced stresses are the main factors affecting wellbore instability and associated problems in drilling operations.These stresses are significantly impacted by pore pressure variation and thermal stresses in the field.In order to address wellbore instability problems,it is important to investigate the mechanisms of rockefluid interaction with respect to thermal and mechanical aspects.In order to understand the induced stresses,different mathematical models have been developed.In this study,the field equations governing the problem have been derived based on the thermo-poroelastic theory and solved analytically in Laplace domain.The results are transferred to time domain using Fourier inverse method.Finite difference method is also utilized to validate the results.Pore pressure and temperature distributions around the wellbore have been focused and simulated.Next,induced radial and tangential stresses for different cases of cooling and heating of formation are compared.In addition,the differences between thermo-poroelastic and poroelastic models in situation of permeable and impermeable wellbores are described.It is observed that cooling and pore pressure distribution reinforce the induced radial stress.Whereas cooling can be a tool to control and reduce tangential stress induced due to invasion of drilling fluid.In the next step,safe mud window is obtained using Mohr-Coulomb,Mogi-Coulomb,and modified Lade failure criteria for different inclinations.Temperature and pore pressure distributions do not change the minimum allowable wellbore pressure significantly.However,upper limit of mud window is sensitive to induced stresses and it seems vital to consider changes in temperature and pore pressure to avoid any failures.The widest and narrowest mud windows are proposed by modified Lade and Mohr-Coulomb failure criteria,respectively.展开更多
Wellbore drilling operations frequently entail the combination of a wide range of variables. This is underpinned by the numerous factors that must be considered in order to ensure safety and productivity. The heteroge...Wellbore drilling operations frequently entail the combination of a wide range of variables. This is underpinned by the numerous factors that must be considered in order to ensure safety and productivity. The heterogeneity and sometimes unpredictable behaviour of underground systems increases the sensitivity of drilling activities. Quite often the operating parameters are set to certify effective and efficient working processes. However, failings in the management of drilling and operating conditions sometimes result in catastrophes such as well collapse or fluid loss. This study investigates the hypothesis that optimising drilling parameters, for instance mud pressure, is crucial if the margin of safe operating conditions is to be properly defined. This was conducted via two main stages: first a deterministic analysis--where the operating conditions are predicted by conventional modelling procedures--and then a probabilistic analysis via stochastic simulations--where a window of optimised operation conditions can be obtained. The outcome of additional stochastic analyses can be used to improve results derived from deterministic models. The incorporation of stochastic techniques in the evaluation of wellbore instability indicates that margins of the safe mud weight window are adjustable and can be extended considerably beyond the limits of deterministic predictions. The safe mud window is influenced and hence can also be amended based on the degree of uncertainty and the permissible level of confidence. The refinement of results from deterministic analyses by additional stochastic simulations is vital if a more accurate and reliable representation of safe in situ and operating conditions is to be obtained during wellbore operations.展开更多
文摘Wellbore stability is a key to have a successful drilling operation.Induced stresses are the main factors affecting wellbore instability and associated problems in drilling operations.These stresses are significantly impacted by pore pressure variation and thermal stresses in the field.In order to address wellbore instability problems,it is important to investigate the mechanisms of rockefluid interaction with respect to thermal and mechanical aspects.In order to understand the induced stresses,different mathematical models have been developed.In this study,the field equations governing the problem have been derived based on the thermo-poroelastic theory and solved analytically in Laplace domain.The results are transferred to time domain using Fourier inverse method.Finite difference method is also utilized to validate the results.Pore pressure and temperature distributions around the wellbore have been focused and simulated.Next,induced radial and tangential stresses for different cases of cooling and heating of formation are compared.In addition,the differences between thermo-poroelastic and poroelastic models in situation of permeable and impermeable wellbores are described.It is observed that cooling and pore pressure distribution reinforce the induced radial stress.Whereas cooling can be a tool to control and reduce tangential stress induced due to invasion of drilling fluid.In the next step,safe mud window is obtained using Mohr-Coulomb,Mogi-Coulomb,and modified Lade failure criteria for different inclinations.Temperature and pore pressure distributions do not change the minimum allowable wellbore pressure significantly.However,upper limit of mud window is sensitive to induced stresses and it seems vital to consider changes in temperature and pore pressure to avoid any failures.The widest and narrowest mud windows are proposed by modified Lade and Mohr-Coulomb failure criteria,respectively.
文摘Wellbore drilling operations frequently entail the combination of a wide range of variables. This is underpinned by the numerous factors that must be considered in order to ensure safety and productivity. The heterogeneity and sometimes unpredictable behaviour of underground systems increases the sensitivity of drilling activities. Quite often the operating parameters are set to certify effective and efficient working processes. However, failings in the management of drilling and operating conditions sometimes result in catastrophes such as well collapse or fluid loss. This study investigates the hypothesis that optimising drilling parameters, for instance mud pressure, is crucial if the margin of safe operating conditions is to be properly defined. This was conducted via two main stages: first a deterministic analysis--where the operating conditions are predicted by conventional modelling procedures--and then a probabilistic analysis via stochastic simulations--where a window of optimised operation conditions can be obtained. The outcome of additional stochastic analyses can be used to improve results derived from deterministic models. The incorporation of stochastic techniques in the evaluation of wellbore instability indicates that margins of the safe mud weight window are adjustable and can be extended considerably beyond the limits of deterministic predictions. The safe mud window is influenced and hence can also be amended based on the degree of uncertainty and the permissible level of confidence. The refinement of results from deterministic analyses by additional stochastic simulations is vital if a more accurate and reliable representation of safe in situ and operating conditions is to be obtained during wellbore operations.