A two-phase flow model accelerated by graphical processing unit(GPU)is developed to solve fluid-solid interaction(FSI)using the sharp-interface immersed boundary method(IBM).This model solves the incompressible Navier...A two-phase flow model accelerated by graphical processing unit(GPU)is developed to solve fluid-solid interaction(FSI)using the sharp-interface immersed boundary method(IBM).This model solves the incompressible Navier-Stokes equations using the projection-based fractional step method in a fixed staggered Cartesian grid system.A volume of fluid(VOF)method with second-order accuracy is employed to trace the free surface.To represent the intricate surface geometry,the structure is discretized using the unstructured triangle mesh.Additionally,a ray tracing method is employed to classify fluid and solid points.A high-order stable scheme has been introduced to reconstruct the local velocity at interface points.Three FSI problems,including wave evolution around a breakwater,interaction between a periodic wave train and a moving float,and a 3-D moving object interacting with the free surface,were investigated to validate the accuracy and stability of the proposed model.The numerical results are in good agreement with the experimental data.Additionally,we evaluated the computational performance of the proposed GPU-based model.The GPU-based model achieved a 42.29 times speedup compared with the single-core CPU-based model in the three-dimension test.Additionally,the results regarding the time cost of each code section indicate that achieving more significant acceleration is associated with solving the turbulence,advection,and diffusion terms,while solving the pressure Poisson equation(PPE)saves the most time.Furthermore,the impact of grid number on computational efficiency indicates that as Fluid-solid interaction(FSI)immersed boundary method(IBM)graphical processing unit(GPU)two-phase flow moving rigid bodythe number of grids increases,the GPU-based model outperforms the multi-core CPU-based model.展开更多
Two-dimensional internal waves generated by a moving flat body in a continuous- ly stratified fluid are investigated by using three kinds of flow-visualization methods:electrolytic precipitation,hydrogen bubbles,and d...Two-dimensional internal waves generated by a moving flat body in a continuous- ly stratified fluid are investigated by using three kinds of flow-visualization methods:electrolytic precipitation,hydrogen bubbles,and dye streaks.Attentions are paid mainly to the generation and propagation process in the upstream region under low internal Froude number(1/10π<F_r<1/2π).The features of the upstream disturbances as well as their relationship with stratification number K (K=1/F_r) are illustrated.The corresponding theoretical analysis is briefly presented,and by comparison,the experimental and theoretical results agree well.展开更多
The paper introduces the gas-kinetic scheme for three-dimensional(3D)flow simulation.First,under a unified coordinate transformation,the 3D gaskinetic BGK equation is transformed into a computational space with arbitr...The paper introduces the gas-kinetic scheme for three-dimensional(3D)flow simulation.First,under a unified coordinate transformation,the 3D gaskinetic BGK equation is transformed into a computational space with arbitrary mesh moving velocity.Second,based on the Chapman-Enskog expansion of the kinetic equation,a local solution of gas distribution function is constructed and used in a finite volume scheme.As a result,a Navier-Stokes flow solver is developed for the low speed flow computation with dynamical mesh movement.Several test cases are used to validate the 3D gas-kinetic method.The first example is a 3D cavity flow with up-moving boundary at Reynolds number 3200,where the periodic solutions are compared with the experimental measurements.Then,the flow evolution inside a rotating 3D cavity is simulated with the moving mesh method,where the solution differences between 2D and 3D simulation are explicitly presented.Finally,the scheme is applied to the falling plate study,where the unsteady plate tumbling motion inside water tank has been studied and compared with the experimental measurements.展开更多
基金supported by the Key Research and Development Program of Yunnan Province(Grant No.202203AA080009)the Open Fund of State Key Laboratory of Hydraulics and Mountain River Engineering,Sichuan University(Grant No.SKHL2208).
文摘A two-phase flow model accelerated by graphical processing unit(GPU)is developed to solve fluid-solid interaction(FSI)using the sharp-interface immersed boundary method(IBM).This model solves the incompressible Navier-Stokes equations using the projection-based fractional step method in a fixed staggered Cartesian grid system.A volume of fluid(VOF)method with second-order accuracy is employed to trace the free surface.To represent the intricate surface geometry,the structure is discretized using the unstructured triangle mesh.Additionally,a ray tracing method is employed to classify fluid and solid points.A high-order stable scheme has been introduced to reconstruct the local velocity at interface points.Three FSI problems,including wave evolution around a breakwater,interaction between a periodic wave train and a moving float,and a 3-D moving object interacting with the free surface,were investigated to validate the accuracy and stability of the proposed model.The numerical results are in good agreement with the experimental data.Additionally,we evaluated the computational performance of the proposed GPU-based model.The GPU-based model achieved a 42.29 times speedup compared with the single-core CPU-based model in the three-dimension test.Additionally,the results regarding the time cost of each code section indicate that achieving more significant acceleration is associated with solving the turbulence,advection,and diffusion terms,while solving the pressure Poisson equation(PPE)saves the most time.Furthermore,the impact of grid number on computational efficiency indicates that as Fluid-solid interaction(FSI)immersed boundary method(IBM)graphical processing unit(GPU)two-phase flow moving rigid bodythe number of grids increases,the GPU-based model outperforms the multi-core CPU-based model.
基金The project supported by National Natural Science Foundation of China.
文摘Two-dimensional internal waves generated by a moving flat body in a continuous- ly stratified fluid are investigated by using three kinds of flow-visualization methods:electrolytic precipitation,hydrogen bubbles,and dye streaks.Attentions are paid mainly to the generation and propagation process in the upstream region under low internal Froude number(1/10π<F_r<1/2π).The features of the upstream disturbances as well as their relationship with stratification number K (K=1/F_r) are illustrated.The corresponding theoretical analysis is briefly presented,and by comparison,the experimental and theoretical results agree well.
基金supported by grants from the National Natural Science Foundation of China(Project No.10772033)K.Xu was supported by Hong Kong Research Grant Council 621709.
文摘The paper introduces the gas-kinetic scheme for three-dimensional(3D)flow simulation.First,under a unified coordinate transformation,the 3D gaskinetic BGK equation is transformed into a computational space with arbitrary mesh moving velocity.Second,based on the Chapman-Enskog expansion of the kinetic equation,a local solution of gas distribution function is constructed and used in a finite volume scheme.As a result,a Navier-Stokes flow solver is developed for the low speed flow computation with dynamical mesh movement.Several test cases are used to validate the 3D gas-kinetic method.The first example is a 3D cavity flow with up-moving boundary at Reynolds number 3200,where the periodic solutions are compared with the experimental measurements.Then,the flow evolution inside a rotating 3D cavity is simulated with the moving mesh method,where the solution differences between 2D and 3D simulation are explicitly presented.Finally,the scheme is applied to the falling plate study,where the unsteady plate tumbling motion inside water tank has been studied and compared with the experimental measurements.