It is significant for the rational construction of the high–efficient bifunctional electrocatalysts for in–depth understandings of how to improve the electron transfer and ion/oxygen transport in catalyzing oxygen r...It is significant for the rational construction of the high–efficient bifunctional electrocatalysts for in–depth understandings of how to improve the electron transfer and ion/oxygen transport in catalyzing oxygen reduction reaction and oxygen evolution reaction(ORR and OER),but still full of vital challenges.Herein,we synthesize the novel“three–in–one”catalyst that engineers core–shell Mott–Schottky Co_(9)S_(8)/Co heterostructure on the defective reduced graphene oxide(Co_(9)S_(8)/Co–rGO).The Co_(9)S_(8)/Co–rGO catalyst exhibits abundant Mott–Schottky heterogeneous–interfaces,the well–defined core–shell nanostructure as well as the defective carbon architecture,which provide the multiple guarantees for enhancing the electron transfer and ion/oxygen transport,thus boosting the catalytic ORR and OER activities in neutral electrolyte.As expected,the integrated core–shell Mott–Schottky Co_(9)S_(8)/Co–rGO catalyst delivers the most robust and efficient rechargeable ZABs performance in neutral solution electrolytes accompanied with a power density of 59.5 mW cm^(-2) and superior cycling stability at 5 mA cm^(-2) over 200 h.This work not only emphasizes the rational designing of the high–efficient bifunctional oxygen catalysts from the fundamental understanding of accelerating the electron transfer and ion/oxygen transport,but also sheds light on the practical application prospects in more friendly environmentally neutral rechargeable ZABs.展开更多
The conditions used for friction stir welding of duplex stainless steels determine the resulting mechanical and corrosion performance of the material.This study investigates the corrosion resistance of UNS S32750 and ...The conditions used for friction stir welding of duplex stainless steels determine the resulting mechanical and corrosion performance of the material.This study investigates the corrosion resistance of UNS S32750 and S32760 superduplex stainless steels(SDSSs)joined by friction stir welding,employing cyclic polarization,Mott–Schottky,and microscopy techniques for analysis.The microscopy images indicated the presence of a deleterious intermetallic phase after electrolytic etching of S32760,as well as decreased corrosion resistance.The presence of molybdenum in the steels promoted better passive behavior at low pH.The Mott–Schottky curves revealed p-n heterojunction behavior of the passive oxide.Images acquired after the polarization test by scanning electron microscopy showed higher passivation propensity with increases of temperature and pH.展开更多
基金financially supported by the National Natural Science Foundation of China (21775142)the Sino–German Center for Research Promotion (Grants GZ 1351)+1 种基金the Natural Science Foundation of Shandong Province (ZR2020ZD10)the Research Funds for the Central Universities (202061031)。
文摘It is significant for the rational construction of the high–efficient bifunctional electrocatalysts for in–depth understandings of how to improve the electron transfer and ion/oxygen transport in catalyzing oxygen reduction reaction and oxygen evolution reaction(ORR and OER),but still full of vital challenges.Herein,we synthesize the novel“three–in–one”catalyst that engineers core–shell Mott–Schottky Co_(9)S_(8)/Co heterostructure on the defective reduced graphene oxide(Co_(9)S_(8)/Co–rGO).The Co_(9)S_(8)/Co–rGO catalyst exhibits abundant Mott–Schottky heterogeneous–interfaces,the well–defined core–shell nanostructure as well as the defective carbon architecture,which provide the multiple guarantees for enhancing the electron transfer and ion/oxygen transport,thus boosting the catalytic ORR and OER activities in neutral electrolyte.As expected,the integrated core–shell Mott–Schottky Co_(9)S_(8)/Co–rGO catalyst delivers the most robust and efficient rechargeable ZABs performance in neutral solution electrolytes accompanied with a power density of 59.5 mW cm^(-2) and superior cycling stability at 5 mA cm^(-2) over 200 h.This work not only emphasizes the rational designing of the high–efficient bifunctional oxygen catalysts from the fundamental understanding of accelerating the electron transfer and ion/oxygen transport,but also sheds light on the practical application prospects in more friendly environmentally neutral rechargeable ZABs.
基金FACEPE for financial supportCNPq for financial support,Scholarships were provided by CNPqUFPE for financial support
文摘The conditions used for friction stir welding of duplex stainless steels determine the resulting mechanical and corrosion performance of the material.This study investigates the corrosion resistance of UNS S32750 and S32760 superduplex stainless steels(SDSSs)joined by friction stir welding,employing cyclic polarization,Mott–Schottky,and microscopy techniques for analysis.The microscopy images indicated the presence of a deleterious intermetallic phase after electrolytic etching of S32760,as well as decreased corrosion resistance.The presence of molybdenum in the steels promoted better passive behavior at low pH.The Mott–Schottky curves revealed p-n heterojunction behavior of the passive oxide.Images acquired after the polarization test by scanning electron microscopy showed higher passivation propensity with increases of temperature and pH.