在环论研究中,IBN(不变基数)性质(参见文献[1])是一个非常重要的性质,只有在IBN环上的自由模才可定义其维数和秩,IBN环在代数K-理论和拓扑学中也有应用.另一方面,Morita系统环(ring of Morita context)是一个包含众多环类的非交换环,如...在环论研究中,IBN(不变基数)性质(参见文献[1])是一个非常重要的性质,只有在IBN环上的自由模才可定义其维数和秩,IBN环在代数K-理论和拓扑学中也有应用.另一方面,Morita系统环(ring of Morita context)是一个包含众多环类的非交换环,如矩阵环、自同态环和环的Morita等价等,它的IBN性引起人们的兴趣.本文证明了若M为有限生成右S-模,N为有限生成左S-模,则T为IBN环当且仅当R或S为IBN环.这一结果使许多重要的已知结论成为特例.展开更多
文摘在环论研究中,IBN(不变基数)性质(参见文献[1])是一个非常重要的性质,只有在IBN环上的自由模才可定义其维数和秩,IBN环在代数K-理论和拓扑学中也有应用.另一方面,Morita系统环(ring of Morita context)是一个包含众多环类的非交换环,如矩阵环、自同态环和环的Morita等价等,它的IBN性引起人们的兴趣.本文证明了若M为有限生成右S-模,N为有限生成左S-模,则T为IBN环当且仅当R或S为IBN环.这一结果使许多重要的已知结论成为特例.