Here, we infer the historical biogeography and evolutionary diversification of the genus Lilium. For this purpose, we used the complete plastomes of 64 currently accepted species in the genus Lilium(14plastomes were n...Here, we infer the historical biogeography and evolutionary diversification of the genus Lilium. For this purpose, we used the complete plastomes of 64 currently accepted species in the genus Lilium(14plastomes were newly sequenced) to recover the phylogenetic backbone of the genus and a timecalibrated phylogenetic framework to estimate biogeographical history scenarios and evolutionary diversification rates of Lilium. Our results suggest that ancient climatic changes and geological tectonic activities jointly shaped the distribution range and drove evolutionary radiation of Lilium, including the Middle Miocene Climate Optimum(MMCO), the late Miocene global cooling, as well as the successive uplift of the Qinghai-Tibet Plateau(QTP) and the strengthening of the monsoon climate in East Asia during the late Miocene and the Pliocene. This case study suggests that the unique geological and climatic events in the Neogene of East Asia, in particular the uplift of QTP and the enhancement of monsoonal climate, may have played an essential role in formation of uneven distribution of plant diversity in the Northern Hemisphere.展开更多
In recent decades,the damage and economic losses caused by climate change and extreme climate events have been increasing rapidly.Although scientists all over the world have made great efforts to understand and predic...In recent decades,the damage and economic losses caused by climate change and extreme climate events have been increasing rapidly.Although scientists all over the world have made great efforts to understand and predict climatic variations,there are still several major problems for improving climate prediction.In 2020,the Center for Climate System Prediction Research(CCSP) was established with support from the National Natural Science Foundation of China.CCSP aims to tackle three scientific problems related to climate prediction—namely,El Ni?o-Southern Oscillation(ENSO) prediction,extended-range weather forecasting,and interannual-to-decadal climate prediction—and hence provide a solid scientific basis for more reliable climate predictions and disaster prevention.In this paper,the major objectives and scientific challenges of CCSP are reported,along with related achievements of its research groups in monsoon dynamics,land-atmosphere interaction and model development,ENSO variability,intraseasonal oscillation,and climate prediction.CCSP will endeavor to tackle key scientific problems in these areas.展开更多
Based on the analyses of the moisture transport structure in the whole layer of the troposphere along the Yangtze River valley during draught/flood years using the NCEP reanalysis data, this paper reveals that there e...Based on the analyses of the moisture transport structure in the whole layer of the troposphere along the Yangtze River valley during draught/flood years using the NCEP reanalysis data, this paper reveals that there exists a key region with a “Large Triangle” shape of transporting moisture for the Tibetan Plateau to Meiyu Belt and its“source/sink” structure; discloses that the interannual variation of the whole budget of inflow and outflow of moisture through the boundaries of a “Large Triangle” key region has the in-phase characteristic. Then a moisture transport structure over the skirt of the plateau and a conceptual model on the “transfer post” of moisture transport in the area of the South China Sea-Tibetan Plateau-Yangtze River valley in summer are put forward in this paper: the anti-phase feature of whole layer moisture transport flow patterns of Yangtze River valley during drought/flooding years is exhibited using the computational scheme of whole layer moisture transport correlation vector fields; a comprehensive dynamic model and its physical diagram of the teleconnection source/sink structure of the moisture transport of the Meiyu rain belt have been made. It shows that the moisture transfer effect over the skirt of the plateau from the ocean (Indian Ocean, South China Sea and west North Pacific) led to a moisture confluence belt in the Yangtze River valley and the teleconnection moisture transport source/sink structure over the “Large Triangle” shape area in flooding years.展开更多
The short-range climate predictions of the onset and intensity of the South China Sea summer monsoon (SCSSM) are studied by statistical and synthesis methods.The relationship between the South China Sea monsoon index ...The short-range climate predictions of the onset and intensity of the South China Sea summer monsoon (SCSSM) are studied by statistical and synthesis methods.The relationship between the South China Sea monsoon index (SCSMI) and the environmental fields,such as 850 hPa winds, 500 hPa heights,SSTs,OLR,is examined.The possible mechanism of the relationship with SCSSM is discussed.The anomaly of the winter SCSMI and the preceding environmental fields may be used as a precursor signal to predict the onset and intensity of SCSSM.Based on the above research results,a conceptual model was constructed to predict the onset and intensity of SCSSM. The results for the trial prediction during 1998 to 2001 have presented satisfactory results.展开更多
By employing the T42L9 spectral model introduced flom ECMWF and utilizing the FGGE-III_b data covering the period from 14 June to 19 June 1979,the effects of the Qinghai-Xizang Plateau on the medium- range weather pro...By employing the T42L9 spectral model introduced flom ECMWF and utilizing the FGGE-III_b data covering the period from 14 June to 19 June 1979,the effects of the Qinghai-Xizang Plateau on the medium- range weather processes of the rain during the onset period of the summer monsoon in Eastern Asia in 1979 were studied numerically.According to the initial field of 12GMT 14 June 1979,five-day numerical experiments with or without the orographic effects were carried out respectively.The results show that the Plateau can influence the precipitation significantly during the summer monsoon season.Although the summer monsoon is the result of the seasonal variations of the global circulation and the heating difference between land and sea,it is influenced evidently by the Plateau in medium-range processes.There are very complex interactions between the mountain and diabatic heating effects so that both of them should be considered correctly in the general circulation models in order to describe the nature of the atmosphere reliably.展开更多
利用代表南海夏季风季节内振荡特征的850 hPa纬向风EOF分解的前两个主成分,定义南海夏季风季节内振荡指数,并利用美国国家环境预测中心第2代气候预报系统(NCEP Climate Forecast System Version 2,NCEP/CFSv2)提供的1982 2009年逐日回...利用代表南海夏季风季节内振荡特征的850 hPa纬向风EOF分解的前两个主成分,定义南海夏季风季节内振荡指数,并利用美国国家环境预测中心第2代气候预报系统(NCEP Climate Forecast System Version 2,NCEP/CFSv2)提供的1982 2009年逐日回算预报场计算了南海夏季风季节内振荡指数的预报值,用于我国南方地区持续性强降水的预报试验。试验结果表明:利用南海夏季风季节内振荡实时监测指数与模式直接预报降水量相结合的统计动力延伸预报方法,能够有效提高季节内降水分量的预报效果。同时,该方法能够避免末端数据损失,修正了对模式预报降水直接进行带通滤波而导致的负相关现象,并起到消除模式系统误差的作用。展开更多
利用长时间的逐日再分析资料和澳大利亚气象局提供的MJO指数,研究了MJO对我国南海冬季风异常的影响和过程。结果表明,随着MJO的对流中心从西印度洋进入西太平洋,南海海面风场出现偏南风-东北风-偏南风异常的振荡现象,表明南海冬季风阶...利用长时间的逐日再分析资料和澳大利亚气象局提供的MJO指数,研究了MJO对我国南海冬季风异常的影响和过程。结果表明,随着MJO的对流中心从西印度洋进入西太平洋,南海海面风场出现偏南风-东北风-偏南风异常的振荡现象,表明南海冬季风阶段性的间断和活跃,最明显的偏南风异常和东北风异常分别位于MJO第8—2位相和第5—6位相。通过合成MJO各位相下500 h Pa东亚大槽异常和200 h Pa东亚急流异常,我们进一步证实南海冬季风活跃期(MJO第5—6位相),东亚大槽加深,高空急流加强,我国华南沿海上空的反气旋式环流异常,东南边缘的引导气流利于冷空气南下直达南海。相反,在南海冬季风间断期(MJO第8—2位相),东亚大槽和高空急流均减弱,不利于冷空气的南下。对200 h Pa垂直速度的分析表明,MJO深对流活动的东移,调整东亚局地Hadley环流异常,在高空表现为反气旋/气旋式环流异常交替发展东移,最终消失在北太平洋地区。一方面通过科氏力的作用,引起东亚高空急流的异常,进而影响东亚大槽的位置和强度,从而影响冷空气的南下;另一方面直接加剧南海海面风场异常的南北向振荡。因此,在做南海冬季风季内变化特别是大风天气过程的延伸期预报时,热带MJO活动可以作为一个重要因子考虑在内。展开更多
By analyzing the Fractal Dimension(FD) distribution of the Short-range Climate system(SCS) in China, it is found that the FD varies in different region and this just agrees with the regionally of the monsoon climate ... By analyzing the Fractal Dimension(FD) distribution of the Short-range Climate system(SCS) in China, it is found that the FD varies in different region and this just agrees with the regionally of the monsoon climate in China. The FD of the SCS Lays between 2.0 and 5.0. In the vast eastern area of China, the FD almost grows gradually with the latitude. Line 4.0 is along the mountain chains from the Nanlin Mountain to the Wuyi Mountain. North of the line the FD varies only slightly and all are above 4.0. Only in coastal islands the FD is smaller than 3.0.展开更多
基金financially supported by the National Natural Science Foundation of China (31872673)Yunnan Revitalization Talent Support Program “Top Team” Project (202305AT350001)the NSFC-Joint Foundation of Yunnan Province (U1802287)。
文摘Here, we infer the historical biogeography and evolutionary diversification of the genus Lilium. For this purpose, we used the complete plastomes of 64 currently accepted species in the genus Lilium(14plastomes were newly sequenced) to recover the phylogenetic backbone of the genus and a timecalibrated phylogenetic framework to estimate biogeographical history scenarios and evolutionary diversification rates of Lilium. Our results suggest that ancient climatic changes and geological tectonic activities jointly shaped the distribution range and drove evolutionary radiation of Lilium, including the Middle Miocene Climate Optimum(MMCO), the late Miocene global cooling, as well as the successive uplift of the Qinghai-Tibet Plateau(QTP) and the strengthening of the monsoon climate in East Asia during the late Miocene and the Pliocene. This case study suggests that the unique geological and climatic events in the Neogene of East Asia, in particular the uplift of QTP and the enhancement of monsoonal climate, may have played an essential role in formation of uneven distribution of plant diversity in the Northern Hemisphere.
基金supported by the National Natural Science Foundation of China [grant number 42088101]。
文摘In recent decades,the damage and economic losses caused by climate change and extreme climate events have been increasing rapidly.Although scientists all over the world have made great efforts to understand and predict climatic variations,there are still several major problems for improving climate prediction.In 2020,the Center for Climate System Prediction Research(CCSP) was established with support from the National Natural Science Foundation of China.CCSP aims to tackle three scientific problems related to climate prediction—namely,El Ni?o-Southern Oscillation(ENSO) prediction,extended-range weather forecasting,and interannual-to-decadal climate prediction—and hence provide a solid scientific basis for more reliable climate predictions and disaster prevention.In this paper,the major objectives and scientific challenges of CCSP are reported,along with related achievements of its research groups in monsoon dynamics,land-atmosphere interaction and model development,ENSO variability,intraseasonal oscillation,and climate prediction.CCSP will endeavor to tackle key scientific problems in these areas.
文摘Based on the analyses of the moisture transport structure in the whole layer of the troposphere along the Yangtze River valley during draught/flood years using the NCEP reanalysis data, this paper reveals that there exists a key region with a “Large Triangle” shape of transporting moisture for the Tibetan Plateau to Meiyu Belt and its“source/sink” structure; discloses that the interannual variation of the whole budget of inflow and outflow of moisture through the boundaries of a “Large Triangle” key region has the in-phase characteristic. Then a moisture transport structure over the skirt of the plateau and a conceptual model on the “transfer post” of moisture transport in the area of the South China Sea-Tibetan Plateau-Yangtze River valley in summer are put forward in this paper: the anti-phase feature of whole layer moisture transport flow patterns of Yangtze River valley during drought/flooding years is exhibited using the computational scheme of whole layer moisture transport correlation vector fields; a comprehensive dynamic model and its physical diagram of the teleconnection source/sink structure of the moisture transport of the Meiyu rain belt have been made. It shows that the moisture transfer effect over the skirt of the plateau from the ocean (Indian Ocean, South China Sea and west North Pacific) led to a moisture confluence belt in the Yangtze River valley and the teleconnection moisture transport source/sink structure over the “Large Triangle” shape area in flooding years.
基金Project supported by the SCSMEX of the Climbing Programme"A"under the Ministry of Science and Technology
文摘The short-range climate predictions of the onset and intensity of the South China Sea summer monsoon (SCSSM) are studied by statistical and synthesis methods.The relationship between the South China Sea monsoon index (SCSMI) and the environmental fields,such as 850 hPa winds, 500 hPa heights,SSTs,OLR,is examined.The possible mechanism of the relationship with SCSSM is discussed.The anomaly of the winter SCSMI and the preceding environmental fields may be used as a precursor signal to predict the onset and intensity of SCSSM.Based on the above research results,a conceptual model was constructed to predict the onset and intensity of SCSSM. The results for the trial prediction during 1998 to 2001 have presented satisfactory results.
文摘By employing the T42L9 spectral model introduced flom ECMWF and utilizing the FGGE-III_b data covering the period from 14 June to 19 June 1979,the effects of the Qinghai-Xizang Plateau on the medium- range weather processes of the rain during the onset period of the summer monsoon in Eastern Asia in 1979 were studied numerically.According to the initial field of 12GMT 14 June 1979,five-day numerical experiments with or without the orographic effects were carried out respectively.The results show that the Plateau can influence the precipitation significantly during the summer monsoon season.Although the summer monsoon is the result of the seasonal variations of the global circulation and the heating difference between land and sea,it is influenced evidently by the Plateau in medium-range processes.There are very complex interactions between the mountain and diabatic heating effects so that both of them should be considered correctly in the general circulation models in order to describe the nature of the atmosphere reliably.
文摘利用代表南海夏季风季节内振荡特征的850 hPa纬向风EOF分解的前两个主成分,定义南海夏季风季节内振荡指数,并利用美国国家环境预测中心第2代气候预报系统(NCEP Climate Forecast System Version 2,NCEP/CFSv2)提供的1982 2009年逐日回算预报场计算了南海夏季风季节内振荡指数的预报值,用于我国南方地区持续性强降水的预报试验。试验结果表明:利用南海夏季风季节内振荡实时监测指数与模式直接预报降水量相结合的统计动力延伸预报方法,能够有效提高季节内降水分量的预报效果。同时,该方法能够避免末端数据损失,修正了对模式预报降水直接进行带通滤波而导致的负相关现象,并起到消除模式系统误差的作用。
文摘利用长时间的逐日再分析资料和澳大利亚气象局提供的MJO指数,研究了MJO对我国南海冬季风异常的影响和过程。结果表明,随着MJO的对流中心从西印度洋进入西太平洋,南海海面风场出现偏南风-东北风-偏南风异常的振荡现象,表明南海冬季风阶段性的间断和活跃,最明显的偏南风异常和东北风异常分别位于MJO第8—2位相和第5—6位相。通过合成MJO各位相下500 h Pa东亚大槽异常和200 h Pa东亚急流异常,我们进一步证实南海冬季风活跃期(MJO第5—6位相),东亚大槽加深,高空急流加强,我国华南沿海上空的反气旋式环流异常,东南边缘的引导气流利于冷空气南下直达南海。相反,在南海冬季风间断期(MJO第8—2位相),东亚大槽和高空急流均减弱,不利于冷空气的南下。对200 h Pa垂直速度的分析表明,MJO深对流活动的东移,调整东亚局地Hadley环流异常,在高空表现为反气旋/气旋式环流异常交替发展东移,最终消失在北太平洋地区。一方面通过科氏力的作用,引起东亚高空急流的异常,进而影响东亚大槽的位置和强度,从而影响冷空气的南下;另一方面直接加剧南海海面风场异常的南北向振荡。因此,在做南海冬季风季内变化特别是大风天气过程的延伸期预报时,热带MJO活动可以作为一个重要因子考虑在内。
基金This work is supported by both NKPFR and NNSF of China.
文摘 By analyzing the Fractal Dimension(FD) distribution of the Short-range Climate system(SCS) in China, it is found that the FD varies in different region and this just agrees with the regionally of the monsoon climate in China. The FD of the SCS Lays between 2.0 and 5.0. In the vast eastern area of China, the FD almost grows gradually with the latitude. Line 4.0 is along the mountain chains from the Nanlin Mountain to the Wuyi Mountain. North of the line the FD varies only slightly and all are above 4.0. Only in coastal islands the FD is smaller than 3.0.
基金Many thanks are due to Dr. Liu Jiang and Prof. Cui Yuanlai for their great contribution to the English translation of the paper. This research was supported by funding from the National Key Project for Basic Research of P.R.China (Grand No. 2003CB415105), National Key Project for Science and Technology Advance of P.R.China (Grand No. 2002BA901A22), and the National Natural Science Foundation of China (Grand No. 40261001).