Electronic structures of monoclinic and hexagonal pyrrhotite were studied using density functional theory method,together with their flotation behavior. The main contribution of monoclinic pyrrhotite is mainly from Fe...Electronic structures of monoclinic and hexagonal pyrrhotite were studied using density functional theory method,together with their flotation behavior. The main contribution of monoclinic pyrrhotite is mainly from Fe 3d, while that of hexagonal pyrrhotite is from Fe 3d, Fe 3p and S 3s. The hexagonal pyrrhotite is more reactive than monoclinic pyrrhotite because of large density of states near the Fermi level. The hexagonal pyrrhotite shows antiferromagnetism. S—Fe bonds mainly exist in monoclinic pyrrhotite as the covalent bonds, while hexagonal pyrrhotite has no covalency. The main contributions of higest occupied molecular orbital(HOMO) and lowest unoccupied molecular obital(LUMO) for monoclinic pyrrhotite come from S and Fe. The main contribution of HOMO for hexagonal pyrrhotite comes from Fe, while that of LUMO comes from S. The coefficient of Fe atom is much larger than that of S atom of HOMO for hexagonal pyrrhotite, which contributes to the adsorption of Ca OH+ on the surface of hexagonal pyrrhotite when there is lime. As a result, lime has the inhibitory effect on the floatation of hexagonal pyrrhotite and the coefficient of Fe is very close to that of S for monoclinic pyrrhotite. Therefore, the existence of S prevents the adsorption of Ca OH+on the surface of monoclinic pyrrhotite, which leads to less inhibitory effect on the flotation of monoclinic pyrrhotite.展开更多
Monoclinicα-MoP_(2),with the OsGe2-type structure(space group C2/m,Z=4)and lattice parameters a=8.7248(11)Å,b=3.2322(4)Å,c=7.4724(9)Å,andβ=119.263°,was synthesized under a pressure of 4~GPa at a ...Monoclinicα-MoP_(2),with the OsGe2-type structure(space group C2/m,Z=4)and lattice parameters a=8.7248(11)Å,b=3.2322(4)Å,c=7.4724(9)Å,andβ=119.263°,was synthesized under a pressure of 4~GPa at a temperature between 1100℃and 1200℃.The structure ofα-MoP_(2) and its relationship to other transition metal diphosphides are discussed.Surprisingly,the ambient pressure phase orthorhombicβ-MoP_(2)(space group Cmc21)is denser in structure thanα-MoP_(2).Room-temperature high-pressure x-ray diffraction studies exclude the possibility of phase transition fromβ-MoP_(2) to α-MoP_(2),suggesting thatα-MoP_(2) is a stable phase at ambient conditions;this is also supported by the total energy and phonon calculations.展开更多
The electronic structures and optical properties of the monoclinic ZrO2 (m-ZrO2) are investigated by means of first-principles local density approximation (LDA) + U approach.Without on-site Coulomb interactions,the ba...The electronic structures and optical properties of the monoclinic ZrO2 (m-ZrO2) are investigated by means of first-principles local density approximation (LDA) + U approach.Without on-site Coulomb interactions,the band gap of m-ZrO2 is 3.60 eV,much lower than the experimental value (5.8 eV).By introducing the Coulomb interactions of 4d orbitals on Zr atom (Ud) and of 2p orbitals on O atom (Up),we can reproduce the experimental value of the band gap.The calculated dielectric function of m-ZrO2 exhibits a small shoulder at the edge of the band gap in its imaginary part,while in the tetragonal ZrO2 and cubic ZrO2 it is absent,which is consistent with the experimental observations.The origin of the shoulder is attributed to the difference of electronic structures near the edge of the valence and conduction bands.展开更多
基金Project supported by the Open Foundation of Guangxi Key Laboratory for Advanced Materials and Manufacturing Technology,China
文摘Electronic structures of monoclinic and hexagonal pyrrhotite were studied using density functional theory method,together with their flotation behavior. The main contribution of monoclinic pyrrhotite is mainly from Fe 3d, while that of hexagonal pyrrhotite is from Fe 3d, Fe 3p and S 3s. The hexagonal pyrrhotite is more reactive than monoclinic pyrrhotite because of large density of states near the Fermi level. The hexagonal pyrrhotite shows antiferromagnetism. S—Fe bonds mainly exist in monoclinic pyrrhotite as the covalent bonds, while hexagonal pyrrhotite has no covalency. The main contributions of higest occupied molecular orbital(HOMO) and lowest unoccupied molecular obital(LUMO) for monoclinic pyrrhotite come from S and Fe. The main contribution of HOMO for hexagonal pyrrhotite comes from Fe, while that of LUMO comes from S. The coefficient of Fe atom is much larger than that of S atom of HOMO for hexagonal pyrrhotite, which contributes to the adsorption of Ca OH+ on the surface of hexagonal pyrrhotite when there is lime. As a result, lime has the inhibitory effect on the floatation of hexagonal pyrrhotite and the coefficient of Fe is very close to that of S for monoclinic pyrrhotite. Therefore, the existence of S prevents the adsorption of Ca OH+on the surface of monoclinic pyrrhotite, which leads to less inhibitory effect on the flotation of monoclinic pyrrhotite.
基金Project supported by the National Natural Science Foundation of China (Grant Nos.92065201,11874264,and 11974154)the Starting Grant of ShanghaiTech University and Analytical Instrumentation Center,SPST,ShanghaiTech University (Grant No.SPST-AIC10112914)support from the Natural Science Foundation of Shandong Province,China (Grant No.ZR2022MA004)。
文摘Monoclinicα-MoP_(2),with the OsGe2-type structure(space group C2/m,Z=4)and lattice parameters a=8.7248(11)Å,b=3.2322(4)Å,c=7.4724(9)Å,andβ=119.263°,was synthesized under a pressure of 4~GPa at a temperature between 1100℃and 1200℃.The structure ofα-MoP_(2) and its relationship to other transition metal diphosphides are discussed.Surprisingly,the ambient pressure phase orthorhombicβ-MoP_(2)(space group Cmc21)is denser in structure thanα-MoP_(2).Room-temperature high-pressure x-ray diffraction studies exclude the possibility of phase transition fromβ-MoP_(2) to α-MoP_(2),suggesting thatα-MoP_(2) is a stable phase at ambient conditions;this is also supported by the total energy and phonon calculations.
基金the National Natural Science Foundation of China,the Strategic Programs for Innovative Research,the Computational Materials Science Initiative,the Yukawa International Program for Quark-Hadron Sciences at YITP,Kyoto University
文摘The electronic structures and optical properties of the monoclinic ZrO2 (m-ZrO2) are investigated by means of first-principles local density approximation (LDA) + U approach.Without on-site Coulomb interactions,the band gap of m-ZrO2 is 3.60 eV,much lower than the experimental value (5.8 eV).By introducing the Coulomb interactions of 4d orbitals on Zr atom (Ud) and of 2p orbitals on O atom (Up),we can reproduce the experimental value of the band gap.The calculated dielectric function of m-ZrO2 exhibits a small shoulder at the edge of the band gap in its imaginary part,while in the tetragonal ZrO2 and cubic ZrO2 it is absent,which is consistent with the experimental observations.The origin of the shoulder is attributed to the difference of electronic structures near the edge of the valence and conduction bands.