Activities at a former Chemistry Triangle in Bitterfeld, Germany, resulted in contamination of groundwater with a mixture of trichloroethylene(TCE) and monochlorobenzene(MCB). The objective of this study was to develo...Activities at a former Chemistry Triangle in Bitterfeld, Germany, resulted in contamination of groundwater with a mixture of trichloroethylene(TCE) and monochlorobenzene(MCB). The objective of this study was to develop a barrier system, which includes an ORC(oxygen release compounds) and GAC(granular activated carbon) layer for adsorption of MCB and bioregeneration of GAC, a Fe 0 layer for chemical reductive dechlorination of TCE and other chlorinated hydrocarbon in situ . A laboratory-scale column experiment was conducted to evaluate the feasibility of this proposed system. This experiment was performed using a series of continuous flow Teflon columns including an ORC column, a GAC column, and a Fe 0 column. Simulated MCB and TCE contaminated groundwater was pumped upflow into this system at a flow rate of 1.1 ml/min. Results showed that 17%—50% of TCE and 28%—50% of MCB were dissipated in ORC column. Chloride ion, however, was not released, which suggest the dechlorination do not happen in ORC column. In GAC column, the adsorption of contaminants on activated carbon and their induced degradation by adapted microorganisms attached to the carbon surface were observed. Due to competitive exchange processes, TCE can be desorbed by MCB in GAC column and further degraded in iron column. The completely dechlorination rate of TCE was 0.16—0.18 cm -1 , 1—4 magnitudes more than the formation rate of three dichloroethene isomers. Cis-DCE is the main chlorinated product, which can be cumulated in the system, not only depending on the formation rate and its decaying rate, but also the initial concentration of TCE.展开更多
The oxidation of aqueous monochlorobenzene (MCB) solutions using thermally- activated persulfate has been investigated. The influence of reaction temperature on the kinetics of MCB oxidation was examined, and the Ar...The oxidation of aqueous monochlorobenzene (MCB) solutions using thermally- activated persulfate has been investigated. The influence of reaction temperature on the kinetics of MCB oxidation was examined, and the Arrenhius Equation rate constants at 20℃, 30℃, 40℃, 50℃, and 60℃ for MCB oxidation performance were calculated as 0, 0.001, 0.002, 0.015, 0.057 min-1, which indicates that elevated temperature accelerated the rate. The most efficient molar ratio ofpersulfate/MCB for MCB oxidation was determined to be 200 to 1 and an increase in the rate constants suggests that the oxidation process proceeded more rapidly with increasing persulfate/MCB molar ratios. In addition, the reactivity of persulfate in contaminated water is partly influenced by the presence of background ions such as CI-, HCO3, SO2 , and NO3. Importantly, a scavenging effect in rate constant was observed for both C1 and CO2- but not for other ions. The effective thermally activated persulfate oxidation of MCB in groundwater from a real contaminated site was achieved using both elevated reaction temperature and increased persulfate/MCB molar ratio.展开更多
The H6P2W18O62/TiO2composite catalyst was prepared by the combination of nonionic surfactant C18H37(OCH2CH2)10OH(Brij-76)as the template and the sol-gel method.As-synthesized composite was characterized by FT-TR,SEM,N...The H6P2W18O62/TiO2composite catalyst was prepared by the combination of nonionic surfactant C18H37(OCH2CH2)10OH(Brij-76)as the template and the sol-gel method.As-synthesized composite was characterized by FT-TR,SEM,N2 absorption-desorption and NH3-TPD.The results showed that the composite H6P2W18O62/TiO2 was mesoporous material(ca.3.3 nm),and large surface area(99.78 m2/g).Additionally,the aggregation of TiO2 particles was effectively inhibited,and the surface acidity was increased substantially.The photocatalytic elimination of monochlorobenzene was used as model reaction to evaluate the photocatalytic activity of the composite catalyst under visible light separately.Photocatalytic experimental results showed that the composite H6P2W18O62/TiO2 can effectively degradate monochlorobenzene.展开更多
The objectives of this study were to illustrate the reaction processes, to identify and quantify the precipitates formed, and to estimate the porosity losses in order to eliminate drawbacks during remediating monochlo...The objectives of this study were to illustrate the reaction processes, to identify and quantify the precipitates formed, and to estimate the porosity losses in order to eliminate drawbacks during remediating monochlorobenzene (MCB) and trichloroethylene (TCE)-contaminated aquifers using the ORC-GAC-Fe^0-CaCO3 system. The system consisted of four columns (112 cm long and 10 cm in diameter) with oxygen-releasing compound (ORC), granular activated carbon (GAC), zero-valent iron (Fe^0), and calcite used sequentially as the reactive media. The concentrations of MCB in the GAC column effluent and TCE in the Fe^0 column effluent were below the detection limit. However, the concentrations of MCB and TCE in the final calcite column exceeded the maximum contaminant level (MCL) under the Safe Drinking Water Act of the US Environmental Protection Agency (US EPA) that protects human health and environment. These results suggested that partitioning of MCB and TCE into the gas phase could occur, and also that transportation of volatile organic pollutants in the gas phase was important. Three main precipitates formed in the ORC-GAC-Fe^0-CaCO3 system: CaCO3 in the ORC column along with Fe(OH)2 and FeCO3 in the Fe^0 column. The total porosity losses caused by mineral precipitation corresponded to about 0.24% porosity in the ORC column, and 1% in the Fe^0 column. The most important cause of porosity losses was anaerobic corrosion of iron. The porosity losses caused by gas because of the production and entrapment of oxygen in the ORC column and hydrogen in the Fe^0 column should not be ignored. Volatilization, precipitation and porosity losses were considered to be the main drawbacks of the ORC-GAC-Fe^0-CaCO3 system in remediating the MCB and TCE-contaminated aquifers. Thus, measurements such as using a suitable oxygen-releasing compound, weakening the increase in pH using a buffer material such as soil, stimulating biodegradation rates and minimizing the plugging caused by the relatively high 展开更多
文摘Activities at a former Chemistry Triangle in Bitterfeld, Germany, resulted in contamination of groundwater with a mixture of trichloroethylene(TCE) and monochlorobenzene(MCB). The objective of this study was to develop a barrier system, which includes an ORC(oxygen release compounds) and GAC(granular activated carbon) layer for adsorption of MCB and bioregeneration of GAC, a Fe 0 layer for chemical reductive dechlorination of TCE and other chlorinated hydrocarbon in situ . A laboratory-scale column experiment was conducted to evaluate the feasibility of this proposed system. This experiment was performed using a series of continuous flow Teflon columns including an ORC column, a GAC column, and a Fe 0 column. Simulated MCB and TCE contaminated groundwater was pumped upflow into this system at a flow rate of 1.1 ml/min. Results showed that 17%—50% of TCE and 28%—50% of MCB were dissipated in ORC column. Chloride ion, however, was not released, which suggest the dechlorination do not happen in ORC column. In GAC column, the adsorption of contaminants on activated carbon and their induced degradation by adapted microorganisms attached to the carbon surface were observed. Due to competitive exchange processes, TCE can be desorbed by MCB in GAC column and further degraded in iron column. The completely dechlorination rate of TCE was 0.16—0.18 cm -1 , 1—4 magnitudes more than the formation rate of three dichloroethene isomers. Cis-DCE is the main chlorinated product, which can be cumulated in the system, not only depending on the formation rate and its decaying rate, but also the initial concentration of TCE.
文摘The oxidation of aqueous monochlorobenzene (MCB) solutions using thermally- activated persulfate has been investigated. The influence of reaction temperature on the kinetics of MCB oxidation was examined, and the Arrenhius Equation rate constants at 20℃, 30℃, 40℃, 50℃, and 60℃ for MCB oxidation performance were calculated as 0, 0.001, 0.002, 0.015, 0.057 min-1, which indicates that elevated temperature accelerated the rate. The most efficient molar ratio ofpersulfate/MCB for MCB oxidation was determined to be 200 to 1 and an increase in the rate constants suggests that the oxidation process proceeded more rapidly with increasing persulfate/MCB molar ratios. In addition, the reactivity of persulfate in contaminated water is partly influenced by the presence of background ions such as CI-, HCO3, SO2 , and NO3. Importantly, a scavenging effect in rate constant was observed for both C1 and CO2- but not for other ions. The effective thermally activated persulfate oxidation of MCB in groundwater from a real contaminated site was achieved using both elevated reaction temperature and increased persulfate/MCB molar ratio.
文摘The H6P2W18O62/TiO2composite catalyst was prepared by the combination of nonionic surfactant C18H37(OCH2CH2)10OH(Brij-76)as the template and the sol-gel method.As-synthesized composite was characterized by FT-TR,SEM,N2 absorption-desorption and NH3-TPD.The results showed that the composite H6P2W18O62/TiO2 was mesoporous material(ca.3.3 nm),and large surface area(99.78 m2/g).Additionally,the aggregation of TiO2 particles was effectively inhibited,and the surface acidity was increased substantially.The photocatalytic elimination of monochlorobenzene was used as model reaction to evaluate the photocatalytic activity of the composite catalyst under visible light separately.Photocatalytic experimental results showed that the composite H6P2W18O62/TiO2 can effectively degradate monochlorobenzene.
文摘The objectives of this study were to illustrate the reaction processes, to identify and quantify the precipitates formed, and to estimate the porosity losses in order to eliminate drawbacks during remediating monochlorobenzene (MCB) and trichloroethylene (TCE)-contaminated aquifers using the ORC-GAC-Fe^0-CaCO3 system. The system consisted of four columns (112 cm long and 10 cm in diameter) with oxygen-releasing compound (ORC), granular activated carbon (GAC), zero-valent iron (Fe^0), and calcite used sequentially as the reactive media. The concentrations of MCB in the GAC column effluent and TCE in the Fe^0 column effluent were below the detection limit. However, the concentrations of MCB and TCE in the final calcite column exceeded the maximum contaminant level (MCL) under the Safe Drinking Water Act of the US Environmental Protection Agency (US EPA) that protects human health and environment. These results suggested that partitioning of MCB and TCE into the gas phase could occur, and also that transportation of volatile organic pollutants in the gas phase was important. Three main precipitates formed in the ORC-GAC-Fe^0-CaCO3 system: CaCO3 in the ORC column along with Fe(OH)2 and FeCO3 in the Fe^0 column. The total porosity losses caused by mineral precipitation corresponded to about 0.24% porosity in the ORC column, and 1% in the Fe^0 column. The most important cause of porosity losses was anaerobic corrosion of iron. The porosity losses caused by gas because of the production and entrapment of oxygen in the ORC column and hydrogen in the Fe^0 column should not be ignored. Volatilization, precipitation and porosity losses were considered to be the main drawbacks of the ORC-GAC-Fe^0-CaCO3 system in remediating the MCB and TCE-contaminated aquifers. Thus, measurements such as using a suitable oxygen-releasing compound, weakening the increase in pH using a buffer material such as soil, stimulating biodegradation rates and minimizing the plugging caused by the relatively high