Diabetes mellitus affects people worldwide,and management of its acute complications or treatment-related adverse events is particularly important in critically ill patients.Previous reports have confirmed that hyperg...Diabetes mellitus affects people worldwide,and management of its acute complications or treatment-related adverse events is particularly important in critically ill patients.Previous reports have confirmed that hyperglycemia can increase the risk of mortality in patients cared in the intensive care unit(ICU).In addition,severe and multiple hypoglycemia increases the risk of mortality when using insulin or intensive antidiabetic therapy.The innovation of continuous glucose monitoring(CGM)may help to alert medical caregivers with regard to the development of hyperglycemia and hypoglycemia,which may decrease the potential complications in patients in the ICU.The major limitation of CGM is the measurement of interstitial glucose levels rather than real-time blood glucose levels;thus,there will be a delay in the treatment of hyperglycemia and hypoglycemia in patients.Recently,the European Union approved a state-of-art artificial intelligence directed loop system coordinated by CGM and a continuous insulin pump for diabetes control,which may provide a practical way to prevent acute adverse glycemic events related to antidiabetic therapy in critically ill patients.In this mini-review paper,we describe the application of CGM to patients in the ICU and summarize the pros and cons of CGM.展开更多
Purpose: The purpose of this work is to study and quantify the differences in calculated dose computed with two algorithms available in treatment planning systems: Pencil Beam Convolution and Clarkson. Material and Me...Purpose: The purpose of this work is to study and quantify the differences in calculated dose computed with two algorithms available in treatment planning systems: Pencil Beam Convolution and Clarkson. Material and Methods: Four different types of treatment cases were analyzed: lung, head and neck, brain and prostate. For each case, the volume definition was based on a clinical CT-scan acquisition. The patients were treated with 3-dimensional radiation therapy. For each patient, 2 treatment plans were generated using exactly the same configuration of beams. In plan 1 and plan 2, the dose was calculated using the Clarkson and Pencil Beam Convolution algorithms, respectively, without heterogeneity correction. To evaluate the treatment plans, the monitor units, isodose curves, dose volume histograms and quality index were compared. A statistical analysis was carried out using Wilcoxon signed rank test. Results: The difference observed for monitor unites was 1.2% for lung and less than 1% for head and neck, brain and prostate. Wilcoxon test showed that there was “no statically significant difference, (p > 0.05)”. The dosimetric parameters derived from dose volume histograms were higher for organs at risks using Clarkson compared to Pencil Beam Convolution algorithm inviting clinician to make “safer” prescriptions. For quality index there was no statistically significant difference between both algorithms for all quality indexes, (p > 0.05). Conclusion: The clinical evaluation of a treatment plan should be made regarding the calculation algorithm which, in turn, is linked to the experience of the clinician.展开更多
A commercially available amorphous Silicon Electronic Portal imaging device (aSi-EPID) installed onto Siemens Oncor Linear accelerator was evaluated with the objective to be implemented for IMRT quality assurance. EPI...A commercially available amorphous Silicon Electronic Portal imaging device (aSi-EPID) installed onto Siemens Oncor Linear accelerator was evaluated with the objective to be implemented for IMRT quality assurance. EPID properties were investigated;these include reproducibility, dependences between the relative EPID responses and field size, dose rate were studied for both photon beams. To determine the inherent build-up of the EPID, varied thickness of Solid-water was placed onto the detector surface and changes in EPID signals were investigated. EPID measurements were compared with ionization chamber measurements (type 30013) connected to a UNIDOS electrometer (PTW-Freiberg) in Water phantom. The use of EPID dose maps was tested by comparing it with TPS-calculated one for IMRT plan applying gamma criteria of 3%/3mm. The results demonstrated that the aSi-EPID signals were reproducible, and response to the applied MUs were linear up to 100 MUs, and then the response became stable for MUs higher than 200, detector should be calibrated in this range. The results showed a clear dependency on the field size and energy. The dosimetric properties measured in this work shows promise that the aSi-EPID can be used for IMRT verifications.展开更多
文摘Diabetes mellitus affects people worldwide,and management of its acute complications or treatment-related adverse events is particularly important in critically ill patients.Previous reports have confirmed that hyperglycemia can increase the risk of mortality in patients cared in the intensive care unit(ICU).In addition,severe and multiple hypoglycemia increases the risk of mortality when using insulin or intensive antidiabetic therapy.The innovation of continuous glucose monitoring(CGM)may help to alert medical caregivers with regard to the development of hyperglycemia and hypoglycemia,which may decrease the potential complications in patients in the ICU.The major limitation of CGM is the measurement of interstitial glucose levels rather than real-time blood glucose levels;thus,there will be a delay in the treatment of hyperglycemia and hypoglycemia in patients.Recently,the European Union approved a state-of-art artificial intelligence directed loop system coordinated by CGM and a continuous insulin pump for diabetes control,which may provide a practical way to prevent acute adverse glycemic events related to antidiabetic therapy in critically ill patients.In this mini-review paper,we describe the application of CGM to patients in the ICU and summarize the pros and cons of CGM.
文摘Purpose: The purpose of this work is to study and quantify the differences in calculated dose computed with two algorithms available in treatment planning systems: Pencil Beam Convolution and Clarkson. Material and Methods: Four different types of treatment cases were analyzed: lung, head and neck, brain and prostate. For each case, the volume definition was based on a clinical CT-scan acquisition. The patients were treated with 3-dimensional radiation therapy. For each patient, 2 treatment plans were generated using exactly the same configuration of beams. In plan 1 and plan 2, the dose was calculated using the Clarkson and Pencil Beam Convolution algorithms, respectively, without heterogeneity correction. To evaluate the treatment plans, the monitor units, isodose curves, dose volume histograms and quality index were compared. A statistical analysis was carried out using Wilcoxon signed rank test. Results: The difference observed for monitor unites was 1.2% for lung and less than 1% for head and neck, brain and prostate. Wilcoxon test showed that there was “no statically significant difference, (p > 0.05)”. The dosimetric parameters derived from dose volume histograms were higher for organs at risks using Clarkson compared to Pencil Beam Convolution algorithm inviting clinician to make “safer” prescriptions. For quality index there was no statistically significant difference between both algorithms for all quality indexes, (p > 0.05). Conclusion: The clinical evaluation of a treatment plan should be made regarding the calculation algorithm which, in turn, is linked to the experience of the clinician.
文摘A commercially available amorphous Silicon Electronic Portal imaging device (aSi-EPID) installed onto Siemens Oncor Linear accelerator was evaluated with the objective to be implemented for IMRT quality assurance. EPID properties were investigated;these include reproducibility, dependences between the relative EPID responses and field size, dose rate were studied for both photon beams. To determine the inherent build-up of the EPID, varied thickness of Solid-water was placed onto the detector surface and changes in EPID signals were investigated. EPID measurements were compared with ionization chamber measurements (type 30013) connected to a UNIDOS electrometer (PTW-Freiberg) in Water phantom. The use of EPID dose maps was tested by comparing it with TPS-calculated one for IMRT plan applying gamma criteria of 3%/3mm. The results demonstrated that the aSi-EPID signals were reproducible, and response to the applied MUs were linear up to 100 MUs, and then the response became stable for MUs higher than 200, detector should be calibrated in this range. The results showed a clear dependency on the field size and energy. The dosimetric properties measured in this work shows promise that the aSi-EPID can be used for IMRT verifications.