A great deal of Mesozoic hypobatholithic granites and hypabyssal porphyries develop in the Qinling Mountains. The former has long been regarded as transformation type (or S-type), and the latter associated with Mo-min...A great deal of Mesozoic hypobatholithic granites and hypabyssal porphyries develop in the Qinling Mountains. The former has long been regarded as transformation type (or S-type), and the latter associated with Mo-mineralization regarded as syntexis type (or l-type) granitoids. Statistics show that Sr, andδ18O of hypabyssal porphyries respectively range from 0.705 to 0.714, and from 7.2‰ to 12.1‰, agreeing with those of hypobatholithes (Sr1=0.705-0.710, δ18O = 6.1‰-10.4‰), which indicates that they share similar material sources and petrogenic mechanism. Based on analysis of lithological, mineralogical and geochemical characteristics of these granitoids and on study of their petrogenic tectonic background and regional geophysical data, we argue that both the shallow-seated porphyries and deep-seated batholithes were the products of Mesozoic collision between South China and North China paleocontinents. Subsequently, all these granti-toids should be attributed to collision type.展开更多
We study a generalized nonlinear KdV system is studied by using the homotopic mapping method. Firstly, a homotopic mapping transform is constructed; secondly, the suitable initial approximation is selected; then the h...We study a generalized nonlinear KdV system is studied by using the homotopic mapping method. Firstly, a homotopic mapping transform is constructed; secondly, the suitable initial approximation is selected; then the homotopic mapping is used. The accuracy of the approximate solution for the solitary wave is obtained. From the obtained approximate solution, the homotopic mapping method exhibits a good accuracy.展开更多
文摘A great deal of Mesozoic hypobatholithic granites and hypabyssal porphyries develop in the Qinling Mountains. The former has long been regarded as transformation type (or S-type), and the latter associated with Mo-mineralization regarded as syntexis type (or l-type) granitoids. Statistics show that Sr, andδ18O of hypabyssal porphyries respectively range from 0.705 to 0.714, and from 7.2‰ to 12.1‰, agreeing with those of hypobatholithes (Sr1=0.705-0.710, δ18O = 6.1‰-10.4‰), which indicates that they share similar material sources and petrogenic mechanism. Based on analysis of lithological, mineralogical and geochemical characteristics of these granitoids and on study of their petrogenic tectonic background and regional geophysical data, we argue that both the shallow-seated porphyries and deep-seated batholithes were the products of Mesozoic collision between South China and North China paleocontinents. Subsequently, all these granti-toids should be attributed to collision type.
基金Supported by the National Natural Science Foundation of China under Grant No 40676016, the National Basic Research Programme of China under Grant Nos 2003CB415101-03 and 2004CB418304, the Knowledge Innovation Project of Chinese Academy of Sciences under Grant No KZCX3-SW-221, in part by E-Institutes of Shanghai Municipal Education Commission under Grant No E03004.
文摘We study a generalized nonlinear KdV system is studied by using the homotopic mapping method. Firstly, a homotopic mapping transform is constructed; secondly, the suitable initial approximation is selected; then the homotopic mapping is used. The accuracy of the approximate solution for the solitary wave is obtained. From the obtained approximate solution, the homotopic mapping method exhibits a good accuracy.